| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Exim before 4.87.1 might allow remote attackers to obtain the private DKIM signing key via vectors related to log files and bounce messages. |
| In ImageMagick before 7.0.5-10, a crafted RLE image can trigger a crash because of incorrect EOF handling in coders/rle.c. NOTE: this vulnerability exists because of an incomplete fix for CVE-2017-9144. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| NTP before 4.2.8p9 rate limits responses received from the configured sources when rate limiting for all associations is enabled, which allows remote attackers to cause a denial of service (prevent responses from the sources) by sending responses with a spoofed source address. |
| The ResourceLinkFactory implementation in Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 did not limit web application access to global JNDI resources to those resources explicitly linked to the web application. Therefore, it was possible for a web application to access any global JNDI resource whether an explicit ResourceLink had been configured or not. |
| Cross-site scripting (XSS) vulnerability in the link dialogue in GUI editor in MoinMoin before 1.9.8 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors. |
| The RSA and DSA decryption code in Nettle makes it easier for attackers to discover private keys via a cache side channel attack. |
| libical 1.0 allows remote attackers to cause a denial of service (use-after-free) via a crafted ics file. |
| When a SecurityManager is configured, a web application's ability to read system properties should be controlled by the SecurityManager. In Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70, 6.0.0 to 6.0.45 the system property replacement feature for configuration files could be used by a malicious web application to bypass the SecurityManager and read system properties that should not be visible. |
| A malicious web application running on Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 was able to bypass a configured SecurityManager via manipulation of the configuration parameters for the JSP Servlet. |
| HKDF in cryptography before 1.5.2 returns an empty byte-string if used with a length less than algorithm.digest_size. |
| In Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 a malicious web application was able to bypass a configured SecurityManager via a Tomcat utility method that was accessible to web applications. |
| A directory traversal exists in the handling of the MXIT protocol in Pidgin. Specially crafted MXIT data sent from the server could potentially result in an overwrite of files. A malicious server or someone with access to the network traffic can provide an invalid filename for a splash image triggering the vulnerability. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11w allows reinstallation of the Integrity Group Temporal Key (IGTK) during the group key handshake, allowing an attacker within radio range to spoof frames from access points to clients. |
| The cjpeg utility in libjpeg allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) or execute arbitrary code via a crafted file. |
| A buffer overflow vulnerability exists in the handling of the MXIT protocol in Pidgin. Specially crafted MXIT data sent by the server could potentially result in an out-of-bounds write of one byte. A malicious server can send a negative content-length in response to a HTTP request triggering the vulnerability. |
| A buffer overflow vulnerability exists in the handling of the MXIT protocol in Pidgin. Specially crafted MXIT data sent from the server could potentially result in arbitrary code execution. A malicious server or an attacker who intercepts the network traffic can send an invalid size for a packet which will trigger a buffer overflow. |
| A buffer overflow vulnerability exists in the handling of the MXIT protocol Pidgin. Specially crafted data sent via the server could potentially result in a buffer overflow, potentially resulting in memory corruption. A malicious server or an unfiltered malicious user can send negative length values to trigger this vulnerability. |
| An exploitable memory corruption vulnerability exists in the handling of the MXIT protocol in Pidgin. Specially crafted MXIT MultiMX message sent via the server can result in an out-of-bounds write leading to memory disclosure and code execution. |
| An exploitable out-of-bounds read exists in the handling of the MXIT protocol in Pidgin. Specially crafted MXIT contact information sent from the server can result in memory disclosure. |