| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (ftsteutates) Fix TOCTOU race in fts_read()
In the fts_read() function, when handling hwmon_pwm_auto_channels_temp,
the code accesses the shared variable data->fan_source[channel] twice
without holding any locks. It is first checked against
FTS_FAN_SOURCE_INVALID, and if the check passes, it is read again
when used as an argument to the BIT() macro.
This creates a Time-of-Check to Time-of-Use (TOCTOU) race condition.
Another thread executing fts_update_device() can modify the value of
data->fan_source[channel] between the check and its use. If the value
is changed to FTS_FAN_SOURCE_INVALID (0xff) during this window, the
BIT() macro will be called with a large shift value (BIT(255)).
A bit shift by a value greater than or equal to the type width is
undefined behavior and can lead to a crash or incorrect values being
returned to userspace.
Fix this by reading data->fan_source[channel] into a local variable
once, eliminating the race condition. Additionally, add a bounds check
to ensure the value is less than BITS_PER_LONG before passing it to
the BIT() macro, making the code more robust against undefined behavior.
This possible bug was found by an experimental static analysis tool
developed by our team. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: only dirty folios when data journaling regular files
fstest generic/388 occasionally reproduces a crash that looks as
follows:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
Call Trace:
<TASK>
ext4_block_zero_page_range+0x30c/0x380 [ext4]
ext4_truncate+0x436/0x440 [ext4]
ext4_process_orphan+0x5d/0x110 [ext4]
ext4_orphan_cleanup+0x124/0x4f0 [ext4]
ext4_fill_super+0x262d/0x3110 [ext4]
get_tree_bdev_flags+0x132/0x1d0
vfs_get_tree+0x26/0xd0
vfs_cmd_create+0x59/0xe0
__do_sys_fsconfig+0x4ed/0x6b0
do_syscall_64+0x82/0x170
...
This occurs when processing a symlink inode from the orphan list. The
partial block zeroing code in the truncate path calls
ext4_dirty_journalled_data() -> folio_mark_dirty(). The latter calls
mapping->a_ops->dirty_folio(), but symlink inodes are not assigned an
a_ops vector in ext4, hence the crash.
To avoid this problem, update the ext4_dirty_journalled_data() helper to
only mark the folio dirty on regular files (for which a_ops is
assigned). This also matches the journaling logic in the ext4_symlink()
creation path, where ext4_handle_dirty_metadata() is called directly. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix out of bounds punch offset
Punching a hole with a start offset that exceeds max_end is not
permitted and will result in a negative length in the
truncate_inode_partial_folio() function while truncating the page cache,
potentially leading to undesirable consequences.
A simple reproducer:
truncate -s 9895604649994 /mnt/foo
xfs_io -c "pwrite 8796093022208 4096" /mnt/foo
xfs_io -c "fpunch 8796093022213 25769803777" /mnt/foo
kernel BUG at include/linux/highmem.h:275!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 3 UID: 0 PID: 710 Comm: xfs_io Not tainted 6.15.0-rc3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:zero_user_segments.constprop.0+0xd7/0x110
RSP: 0018:ffffc90001cf3b38 EFLAGS: 00010287
RAX: 0000000000000005 RBX: ffffea0001485e40 RCX: 0000000000001000
RDX: 000000000040b000 RSI: 0000000000000005 RDI: 000000000040b000
RBP: 000000000040affb R08: ffff888000000000 R09: ffffea0000000000
R10: 0000000000000003 R11: 00000000fffc7fc5 R12: 0000000000000005
R13: 000000000040affb R14: ffffea0001485e40 R15: ffff888031cd3000
FS: 00007f4f63d0b780(0000) GS:ffff8880d337d000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000001ae0b038 CR3: 00000000536aa000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
truncate_inode_partial_folio+0x3dd/0x620
truncate_inode_pages_range+0x226/0x720
? bdev_getblk+0x52/0x3e0
? ext4_get_group_desc+0x78/0x150
? crc32c_arch+0xfd/0x180
? __ext4_get_inode_loc+0x18c/0x840
? ext4_inode_csum+0x117/0x160
? jbd2_journal_dirty_metadata+0x61/0x390
? __ext4_handle_dirty_metadata+0xa0/0x2b0
? kmem_cache_free+0x90/0x5a0
? jbd2_journal_stop+0x1d5/0x550
? __ext4_journal_stop+0x49/0x100
truncate_pagecache_range+0x50/0x80
ext4_truncate_page_cache_block_range+0x57/0x3a0
ext4_punch_hole+0x1fe/0x670
ext4_fallocate+0x792/0x17d0
? __count_memcg_events+0x175/0x2a0
vfs_fallocate+0x121/0x560
ksys_fallocate+0x51/0xc0
__x64_sys_fallocate+0x24/0x40
x64_sys_call+0x18d2/0x4170
do_syscall_64+0xa7/0x220
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix this by filtering out cases where the punching start offset exceeds
max_end. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: arfs: fix use-after-free when freeing @rx_cpu_rmap
The CI testing bots triggered the following splat:
[ 718.203054] BUG: KASAN: use-after-free in free_irq_cpu_rmap+0x53/0x80
[ 718.206349] Read of size 4 at addr ffff8881bd127e00 by task sh/20834
[ 718.212852] CPU: 28 PID: 20834 Comm: sh Kdump: loaded Tainted: G S W IOE 5.17.0-rc8_nextqueue-devqueue-02643-g23f3121aca93 #1
[ 718.219695] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0012.070720200218 07/07/2020
[ 718.223418] Call Trace:
[ 718.227139]
[ 718.230783] dump_stack_lvl+0x33/0x42
[ 718.234431] print_address_description.constprop.9+0x21/0x170
[ 718.238177] ? free_irq_cpu_rmap+0x53/0x80
[ 718.241885] ? free_irq_cpu_rmap+0x53/0x80
[ 718.245539] kasan_report.cold.18+0x7f/0x11b
[ 718.249197] ? free_irq_cpu_rmap+0x53/0x80
[ 718.252852] free_irq_cpu_rmap+0x53/0x80
[ 718.256471] ice_free_cpu_rx_rmap.part.11+0x37/0x50 [ice]
[ 718.260174] ice_remove_arfs+0x5f/0x70 [ice]
[ 718.263810] ice_rebuild_arfs+0x3b/0x70 [ice]
[ 718.267419] ice_rebuild+0x39c/0xb60 [ice]
[ 718.270974] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[ 718.274472] ? ice_init_phy_user_cfg+0x360/0x360 [ice]
[ 718.278033] ? delay_tsc+0x4a/0xb0
[ 718.281513] ? preempt_count_sub+0x14/0xc0
[ 718.284984] ? delay_tsc+0x8f/0xb0
[ 718.288463] ice_do_reset+0x92/0xf0 [ice]
[ 718.292014] ice_pci_err_resume+0x91/0xf0 [ice]
[ 718.295561] pci_reset_function+0x53/0x80
<...>
[ 718.393035] Allocated by task 690:
[ 718.433497] Freed by task 20834:
[ 718.495688] Last potentially related work creation:
[ 718.568966] The buggy address belongs to the object at ffff8881bd127e00
which belongs to the cache kmalloc-96 of size 96
[ 718.574085] The buggy address is located 0 bytes inside of
96-byte region [ffff8881bd127e00, ffff8881bd127e60)
[ 718.579265] The buggy address belongs to the page:
[ 718.598905] Memory state around the buggy address:
[ 718.601809] ffff8881bd127d00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
[ 718.604796] ffff8881bd127d80: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc
[ 718.607794] >ffff8881bd127e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
[ 718.610811] ^
[ 718.613819] ffff8881bd127e80: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc
[ 718.617107] ffff8881bd127f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
This is due to that free_irq_cpu_rmap() is always being called
*after* (devm_)free_irq() and thus it tries to work with IRQ descs
already freed. For example, on device reset the driver frees the
rmap right before allocating a new one (the splat above).
Make rmap creation and freeing function symmetrical with
{request,free}_irq() calls i.e. do that on ifup/ifdown instead
of device probe/remove/resume. These operations can be performed
independently from the actual device aRFS configuration.
Also, make sure ice_vsi_free_irq() clears IRQ affinity notifiers
only when aRFS is disabled -- otherwise, CPU rmap sets and clears
its own and they must not be touched manually. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix even more out of bound writes from debugfs
CVE-2021-42327 was fixed by:
commit f23750b5b3d98653b31d4469592935ef6364ad67
Author: Thelford Williams <tdwilliamsiv@gmail.com>
Date: Wed Oct 13 16:04:13 2021 -0400
drm/amdgpu: fix out of bounds write
but amdgpu_dm_debugfs.c contains more of the same issue so fix the
remaining ones.
v2:
* Add missing fix in dp_max_bpc_write (Harry Wentland) |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: avoid kernel BUG for encrypted inode with unaligned file size
The generic/397 test hits a BUG_ON for the case of encrypted inode with
unaligned file size (for example, 33K or 1K):
[ 877.737811] run fstests generic/397 at 2025-01-03 12:34:40
[ 877.875761] libceph: mon0 (2)127.0.0.1:40674 session established
[ 877.876130] libceph: client4614 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 877.991965] libceph: mon0 (2)127.0.0.1:40674 session established
[ 877.992334] libceph: client4617 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.017234] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.017594] libceph: client4620 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.031394] xfs_io (pid 18988) is setting deprecated v1 encryption policy; recommend upgrading to v2.
[ 878.054528] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.054892] libceph: client4623 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.070287] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.070704] libceph: client4626 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.264586] libceph: mon0 (2)127.0.0.1:40674 session established
[ 878.265258] libceph: client4629 fsid 19b90bca-f1ae-47a6-93dd-0b03ee637949
[ 878.374578] -----------[ cut here ]------------
[ 878.374586] kernel BUG at net/ceph/messenger.c:1070!
[ 878.375150] Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 878.378145] CPU: 2 UID: 0 PID: 4759 Comm: kworker/2:9 Not tainted 6.13.0-rc5+ #1
[ 878.378969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 878.380167] Workqueue: ceph-msgr ceph_con_workfn
[ 878.381639] RIP: 0010:ceph_msg_data_cursor_init+0x42/0x50
[ 878.382152] Code: 89 17 48 8b 46 70 55 48 89 47 08 c7 47 18 00 00 00 00 48 89 e5 e8 de cc ff ff 5d 31 c0 31 d2 31 f6 31 ff c3 cc cc cc cc 0f 0b <0f> 0b 0f 0b 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90
[ 878.383928] RSP: 0018:ffffb4ffc7cbbd28 EFLAGS: 00010287
[ 878.384447] RAX: ffffffff82bb9ac0 RBX: ffff981390c2f1f8 RCX: 0000000000000000
[ 878.385129] RDX: 0000000000009000 RSI: ffff981288232b58 RDI: ffff981390c2f378
[ 878.385839] RBP: ffffb4ffc7cbbe18 R08: 0000000000000000 R09: 0000000000000000
[ 878.386539] R10: 0000000000000000 R11: 0000000000000000 R12: ffff981390c2f030
[ 878.387203] R13: ffff981288232b58 R14: 0000000000000029 R15: 0000000000000001
[ 878.387877] FS: 0000000000000000(0000) GS:ffff9814b7900000(0000) knlGS:0000000000000000
[ 878.388663] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 878.389212] CR2: 00005e106a0554e0 CR3: 0000000112bf0001 CR4: 0000000000772ef0
[ 878.389921] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 878.390620] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 878.391307] PKRU: 55555554
[ 878.391567] Call Trace:
[ 878.391807] <TASK>
[ 878.392021] ? show_regs+0x71/0x90
[ 878.392391] ? die+0x38/0xa0
[ 878.392667] ? do_trap+0xdb/0x100
[ 878.392981] ? do_error_trap+0x75/0xb0
[ 878.393372] ? ceph_msg_data_cursor_init+0x42/0x50
[ 878.393842] ? exc_invalid_op+0x53/0x80
[ 878.394232] ? ceph_msg_data_cursor_init+0x42/0x50
[ 878.394694] ? asm_exc_invalid_op+0x1b/0x20
[ 878.395099] ? ceph_msg_data_cursor_init+0x42/0x50
[ 878.395583] ? ceph_con_v2_try_read+0xd16/0x2220
[ 878.396027] ? _raw_spin_unlock+0xe/0x40
[ 878.396428] ? raw_spin_rq_unlock+0x10/0x40
[ 878.396842] ? finish_task_switch.isra.0+0x97/0x310
[ 878.397338] ? __schedule+0x44b/0x16b0
[ 878.397738] ceph_con_workfn+0x326/0x750
[ 878.398121] process_one_work+0x188/0x3d0
[ 878.398522] ? __pfx_worker_thread+0x10/0x10
[ 878.398929] worker_thread+0x2b5/0x3c0
[ 878.399310] ? __pfx_worker_thread+0x10/0x10
[ 878.399727] kthread+0xe1/0x120
[ 878.400031] ? __pfx_kthread+0x10/0x10
[ 878.400431] ret_from_fork+0x43/0x70
[ 878.400771] ? __pfx_kthread+0x10/0x10
[ 878.401127] ret_from_fork_asm+0x1a/0x30
[ 878.401543] </TASK>
[ 878.401760] Modules l
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix error handling path in bnxt_init_chip()
WARN_ON() is triggered in __flush_work() if bnxt_init_chip() fails
because we call cancel_work_sync() on dim work that has not been
initialized.
WARNING: CPU: 37 PID: 5223 at kernel/workqueue.c:4201 __flush_work.isra.0+0x212/0x230
The driver relies on the BNXT_STATE_NAPI_DISABLED bit to check if dim
work has already been cancelled. But in the bnxt_open() path,
BNXT_STATE_NAPI_DISABLED is not set and this causes the error
path to think that it needs to cancel the uninitalized dim work.
Fix it by setting BNXT_STATE_NAPI_DISABLED during initialization.
The bit will be cleared when we enable NAPI and initialize dim work. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Verify content returned by parse_int_array()
The first element of the returned array stores its length. If it is 0,
any manipulation beyond the element at index 0 ends with null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Fix possible null-ptr-deref when initing hw
Search result of avs_dai_find_path_template() shall be verified before
being used. As 'template' is already known when
avs_hw_constraints_init() is fired, drop the search entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/vm: move xe_svm_init() earlier
In xe_vm_close_and_put() we need to be able to call xe_svm_fini(),
however during vm creation we can call this on the error path, before
having actually initialised the svm state, leading to various splats
followed by a fatal NPD.
(cherry picked from commit 4f296d77cf49fcb5f90b4674123ad7f3a0676165) |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: get rid of the crit lock
Get rid of the crit lock.
That frees us from the error prone logic of try_locks.
Thanks to netdev_lock() by Jakub it is now easy, and in most cases we were
protected by it already - replace crit lock by netdev lock when it was not
the case.
Lockdep reports that we should cancel the work under crit_lock [splat1],
and that was the scheme we have mostly followed since [1] by Slawomir.
But when that is done we still got into deadlocks [splat2]. So instead
we should look at the bigger problem, namely "weird locking/scheduling"
of the iavf. The first step to fix that is to remove the crit lock.
I will followup with a -next series that simplifies scheduling/tasks.
Cancel the work without netdev lock (weird unlock+lock scheme),
to fix the [splat2] (which would be totally ugly if we would kept
the crit lock).
Extend protected part of iavf_watchdog_task() to include scheduling
more work.
Note that the removed comment in iavf_reset_task() was misplaced,
it belonged to inside of the removed if condition, so it's gone now.
[splat1] - w/o this patch - The deadlock during VF removal:
WARNING: possible circular locking dependency detected
sh/3825 is trying to acquire lock:
((work_completion)(&(&adapter->watchdog_task)->work)){+.+.}-{0:0}, at: start_flush_work+0x1a1/0x470
but task is already holding lock:
(&adapter->crit_lock){+.+.}-{4:4}, at: iavf_remove+0xd1/0x690 [iavf]
which lock already depends on the new lock.
[splat2] - when cancelling work under crit lock, w/o this series,
see [2] for the band aid attempt
WARNING: possible circular locking dependency detected
sh/3550 is trying to acquire lock:
((wq_completion)iavf){+.+.}-{0:0}, at: touch_wq_lockdep_map+0x26/0x90
but task is already holding lock:
(&dev->lock){+.+.}-{4:4}, at: iavf_remove+0xa6/0x6e0 [iavf]
which lock already depends on the new lock.
[1] fc2e6b3b132a ("iavf: Rework mutexes for better synchronisation")
[2] https://github.com/pkitszel/linux/commit/52dddbfc2bb60294083f5711a158a |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-pci: Fix result size returned for the admin command completion
The result size returned by virtio_pci_admin_dev_parts_get() is 8 bytes
larger than the actual result data size. This occurs because the
result_sg_size field of the command is filled with the result length
from virtqueue_get_buf(), which includes both the data size and an
additional 8 bytes of status.
This oversized result size causes two issues:
1. The state transferred to the destination includes 8 bytes of extra
data at the end.
2. The allocated buffer in the kernel may be smaller than the returned
size, leading to failures when reading beyond the allocated size.
The commit fixes this by subtracting the status size from the result of
virtqueue_get_buf().
This fix has been tested through live migrations with virtio-net,
virtio-net-transitional, and virtio-blk devices. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel: Check dsbr size from EFI variable
Since the size of struct btintel_dsbr is already known, we can just
start there instead of querying the EFI variable size. If the final
result doesn't match what we expect also fail. This fixes a stack buffer
overflow when the EFI variable is larger than struct btintel_dsbr. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: avoid NULL pointer dereference in mt7996_set_monitor()
The function mt7996_set_monitor() dereferences phy before
the NULL sanity check.
Fix this to avoid NULL pointer dereference by moving the
dereference after the check. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix buffer overflow in debugfs
If the user tries to write more than 32 bytes then it results in memory
corruption. Fortunately, this is debugfs so it's limited to root users. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: arm-ni: Fix missing platform_set_drvdata()
Add missing platform_set_drvdata in arm_ni_probe(), otherwise
calling platform_get_drvdata() in remove returns NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: add free_transport ops in ksmbd connection
free_transport function for tcp connection can be called from smbdirect.
It will cause kernel oops. This patch add free_transport ops in ksmbd
connection, and add each free_transports for tcp and smbdirect. |
| In the Linux kernel, the following vulnerability has been resolved:
fgraph: Do not enable function_graph tracer when setting funcgraph-args
When setting the funcgraph-args option when function graph tracer is net
enabled, it incorrectly enables it. Worse, it unregisters itself when it
was never registered. Then when it gets enabled again, it will register
itself a second time causing a WARNing.
~# echo 1 > /sys/kernel/tracing/options/funcgraph-args
~# head -20 /sys/kernel/tracing/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 813/26317372 #P:8
#
# _-----=> irqs-off/BH-disabled
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> migrate-disable
# |||| / delay
# TASK-PID CPU# ||||| TIMESTAMP FUNCTION
# | | | ||||| | |
<idle>-0 [007] d..4. 358.966010: 7) 1.692 us | fetch_next_timer_interrupt(basej=4294981640, basem=357956000000, base_local=0xffff88823c3ae040, base_global=0xffff88823c3af300, tevt=0xffff888100e47cb8);
<idle>-0 [007] d..4. 358.966012: 7) | tmigr_cpu_deactivate(nextexp=357988000000) {
<idle>-0 [007] d..4. 358.966013: 7) | _raw_spin_lock(lock=0xffff88823c3b2320) {
<idle>-0 [007] d..4. 358.966014: 7) 0.981 us | preempt_count_add(val=1);
<idle>-0 [007] d..5. 358.966017: 7) 1.058 us | do_raw_spin_lock(lock=0xffff88823c3b2320);
<idle>-0 [007] d..4. 358.966019: 7) 5.824 us | }
<idle>-0 [007] d..5. 358.966021: 7) | tmigr_inactive_up(group=0xffff888100cb9000, child=0x0, data=0xffff888100e47bc0) {
<idle>-0 [007] d..5. 358.966022: 7) | tmigr_update_events(group=0xffff888100cb9000, child=0x0, data=0xffff888100e47bc0) {
Notice the "tracer: nop" at the top there. The current tracer is the "nop"
tracer, but the content is obviously the function graph tracer.
Enabling function graph tracing will cause it to register again and
trigger a warning in the accounting:
~# echo function_graph > /sys/kernel/tracing/current_tracer
-bash: echo: write error: Device or resource busy
With the dmesg of:
------------[ cut here ]------------
WARNING: CPU: 7 PID: 1095 at kernel/trace/ftrace.c:3509 ftrace_startup_subops+0xc1e/0x1000
Modules linked in: kvm_intel kvm irqbypass
CPU: 7 UID: 0 PID: 1095 Comm: bash Not tainted 6.16.0-rc2-test-00006-gea03de4105d3 #24 PREEMPT
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:ftrace_startup_subops+0xc1e/0x1000
Code: 48 b8 22 01 00 00 00 00 ad de 49 89 84 24 88 01 00 00 8b 44 24 08 89 04 24 e9 c3 f7 ff ff c7 04 24 ed ff ff ff e9 b7 f7 ff ff <0f> 0b c7 04 24 f0 ff ff ff e9 a9 f7 ff ff c7 04 24 f4 ff ff ff e9
RSP: 0018:ffff888133cff948 EFLAGS: 00010202
RAX: 0000000000000001 RBX: 1ffff1102679ff31 RCX: 0000000000000000
RDX: 1ffffffff0b27a60 RSI: ffffffff8593d2f0 RDI: ffffffff85941140
RBP: 00000000000c2041 R08: ffffffffffffffff R09: ffffed1020240221
R10: ffff88810120110f R11: ffffed1020240214 R12: ffffffff8593d2f0
R13: ffffffff8593d300 R14: ffffffff85941140 R15: ffffffff85631100
FS: 00007f7ec6f28740(0000) GS:ffff8882b5251000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7ec6f181c0 CR3: 000000012f1d0005 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __pfx_ftrace_startup_subops+0x10/0x10
? find_held_lock+0x2b/0x80
? ftrace_stub_direct_tramp+0x10/0x10
? ftrace_stub_direct_tramp+0x10/0x10
? trace_preempt_on+0xd0/0x110
? __pfx_trace_graph_entry_args+0x10/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix OOB memory read access in KUnit test (wmfw info)
KASAN reported out of bounds access - cs_dsp_mock_wmfw_add_info(),
because the source string length was rounded up to the allocation size. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix OOB memory read access in KUnit test (ctl cache)
KASAN reported out of bounds access - cs_dsp_ctl_cache_init_multiple_offsets().
The code uses mock_coeff_template.length_bytes (4 bytes) for register value
allocations. But later, this length is set to 8 bytes which causes
test code failures.
As fix, just remove the lenght override, keeping the original value 4
for all operations. |