| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Type Confusion in V8 in Google Chrome prior to 125.0.6422.60 allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted HTML page. (Chromium security severity: High) |
| An Use-after-free vulnerability in WLAvalancheService component of Ivanti Avalanche before 6.4.3 allows a remote authenticated attacker to execute arbitrary commands as SYSTEM. |
| A use-after-free vulnerability exists in the way Foxit Reader 2024.1.0.23997 handles a ComboBox widget. A specially crafted JavaScript code inside a malicious PDF document can trigger reuse of a previously freed object, which can lead to memory corruption and result in arbitrary code execution. An attacker needs to trick the user into opening the malicious file to trigger this vulnerability. Exploitation is also possible if a user visits a specially crafted, malicious site if the browser plugin extension is enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix UAF when lookup kallsym after ftrace disabled
The following issue happens with a buggy module:
BUG: unable to handle page fault for address: ffffffffc05d0218
PGD 1bd66f067 P4D 1bd66f067 PUD 1bd671067 PMD 101808067 PTE 0
Oops: Oops: 0000 [#1] SMP KASAN PTI
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
RIP: 0010:sized_strscpy+0x81/0x2f0
RSP: 0018:ffff88812d76fa08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffffffc0601010 RCX: dffffc0000000000
RDX: 0000000000000038 RSI: dffffc0000000000 RDI: ffff88812608da2d
RBP: 8080808080808080 R08: ffff88812608da2d R09: ffff88812608da68
R10: ffff88812608d82d R11: ffff88812608d810 R12: 0000000000000038
R13: ffff88812608da2d R14: ffffffffc05d0218 R15: fefefefefefefeff
FS: 00007fef552de740(0000) GS:ffff8884251c7000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc05d0218 CR3: 00000001146f0000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ftrace_mod_get_kallsym+0x1ac/0x590
update_iter_mod+0x239/0x5b0
s_next+0x5b/0xa0
seq_read_iter+0x8c9/0x1070
seq_read+0x249/0x3b0
proc_reg_read+0x1b0/0x280
vfs_read+0x17f/0x920
ksys_read+0xf3/0x1c0
do_syscall_64+0x5f/0x2e0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The above issue may happen as follows:
(1) Add kprobe tracepoint;
(2) insmod test.ko;
(3) Module triggers ftrace disabled;
(4) rmmod test.ko;
(5) cat /proc/kallsyms; --> Will trigger UAF as test.ko already removed;
ftrace_mod_get_kallsym()
...
strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
...
The problem is when a module triggers an issue with ftrace and
sets ftrace_disable. The ftrace_disable is set when an anomaly is
discovered and to prevent any more damage, ftrace stops all text
modification. The issue that happened was that the ftrace_disable stops
more than just the text modification.
When a module is loaded, its init functions can also be traced. Because
kallsyms deletes the init functions after a module has loaded, ftrace
saves them when the module is loaded and function tracing is enabled. This
allows the output of the function trace to show the init function names
instead of just their raw memory addresses.
When a module is removed, ftrace_release_mod() is called, and if
ftrace_disable is set, it just returns without doing anything more. The
problem here is that it leaves the mod_list still around and if kallsyms
is called, it will call into this code and access the module memory that
has already been freed as it will return:
strscpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
Where the "mod" no longer exists and triggers a UAF bug. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: Always pass notifications when child class becomes empty
Certain classful qdiscs may invoke their classes' dequeue handler on an
enqueue operation. This may unexpectedly empty the child qdisc and thus
make an in-flight class passive via qlen_notify(). Most qdiscs do not
expect such behaviour at this point in time and may re-activate the
class eventually anyways which will lead to a use-after-free.
The referenced fix commit attempted to fix this behavior for the HFSC
case by moving the backlog accounting around, though this turned out to
be incomplete since the parent's parent may run into the issue too.
The following reproducer demonstrates this use-after-free:
tc qdisc add dev lo root handle 1: drr
tc filter add dev lo parent 1: basic classid 1:1
tc class add dev lo parent 1: classid 1:1 drr
tc qdisc add dev lo parent 1:1 handle 2: hfsc def 1
tc class add dev lo parent 2: classid 2:1 hfsc rt m1 8 d 1 m2 0
tc qdisc add dev lo parent 2:1 handle 3: netem
tc qdisc add dev lo parent 3:1 handle 4: blackhole
echo 1 | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888
tc class delete dev lo classid 1:1
echo 1 | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888
Since backlog accounting issues leading to a use-after-frees on stale
class pointers is a recurring pattern at this point, this patch takes
a different approach. Instead of trying to fix the accounting, the patch
ensures that qdisc_tree_reduce_backlog always calls qlen_notify when
the child qdisc is empty. This solves the problem because deletion of
qdiscs always involves a call to qdisc_reset() and / or
qdisc_purge_queue() which ultimately resets its qlen to 0 thus causing
the following qdisc_tree_reduce_backlog() to report to the parent. Note
that this may call qlen_notify on passive classes multiple times. This
is not a problem after the recent patch series that made all the
classful qdiscs qlen_notify() handlers idempotent. |
| Use After Free vulnerability in RTI Connext Professional (Security Plugins) allows File Manipulation.This issue affects Connext Professional: from 7.5.0 before 7.6.0. |
| A vulnerability was detected in ggml-org whisper.cpp up to 1.8.2. Affected is the function read_audio_data of the file /whisper.cpp/examples/common-whisper.cpp. The manipulation results in use after free. The attack requires a local approach. The exploit is now public and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| In bigo_map of bigo_iommu.c, there is a possible information disclosure due to a use after free. This could lead to local escalation of privilege in the OS Kernel level with System execution privileges needed. User interaction is not needed for exploitation. |
| Use after free in endpoint destructors in Redboltz async_mqtt 10.2.5 allows local users to cause a denial of service via triggering SSL initialization failure that results in incorrect destruction order between io_context and endpoint objects. |
| Use-after-free in the Audio/Video: GMP component. This vulnerability affects Firefox < 146 and Thunderbird < 146. |
| Use-after-free in the WebRTC: Signaling component. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6. |
| InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| InDesign Desktop versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| InCopy versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| InCopy versions 20.5, 19.5.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix use-after-free on failed backlog decryption
When the decrypt request goes to the backlog and crypto_aead_decrypt
returns -EBUSY, tls_do_decryption will wait until all async
decryptions have completed. If one of them fails, tls_do_decryption
will return -EBADMSG and tls_decrypt_sg jumps to the error path,
releasing all the pages. But the pages have been passed to the async
callback, and have already been released by tls_decrypt_done.
The only true async case is when crypto_aead_decrypt returns
-EINPROGRESS. With -EBUSY, we already waited so we can tell
tls_sw_recvmsg that the data is available for immediate copy, but we
need to notify tls_decrypt_sg (via the new ->async_done flag) that the
memory has already been released. |
| A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free.
We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325. |
| Substance3D - Stager versions 3.1.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Substance3D - Stager versions 3.1.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Wasmi is a WebAssembly interpreter focused on constrained and embedded systems. In versions 0.41.0, 0.41.1, 0.42.0 through 0.47.1, 0.50.0 through 0.51.2 and 1.0.0, Wasmi's linear memory implementation leads to a Use After Free vulnerability, triggered by a WebAssembly module under certain memory growth conditions. This issue potentially leads to memory corruption, information disclosure, or code execution. This issue is fixed in versions 0.41.2, 0.47.1, 0.51.3 and 1.0.1. To workaround this issue, consider limiting the maximum linear memory sizes where feasible. |