Search Results (41073 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-51729 1 Linux 1 Linux Kernel 2025-09-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mm: use aligned address in copy_user_gigantic_page() In current kernel, hugetlb_wp() calls copy_user_large_folio() with the fault address. Where the fault address may be not aligned with the huge page size. Then, copy_user_large_folio() may call copy_user_gigantic_page() with the address, while copy_user_gigantic_page() requires the address to be huge page size aligned. So, this may cause memory corruption or information leak, addtional, use more obvious naming 'addr_hint' instead of 'addr' for copy_user_gigantic_page().
CVE-2022-49094 1 Linux 1 Linux Kernel 2025-09-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net/tls: fix slab-out-of-bounds bug in decrypt_internal The memory size of tls_ctx->rx.iv for AES128-CCM is 12 setting in tls_set_sw_offload(). The return value of crypto_aead_ivsize() for "ccm(aes)" is 16. So memcpy() require 16 bytes from 12 bytes memory space will trigger slab-out-of-bounds bug as following: ================================================================== BUG: KASAN: slab-out-of-bounds in decrypt_internal+0x385/0xc40 [tls] Read of size 16 at addr ffff888114e84e60 by task tls/10911 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report.cold+0x5e/0x5db ? decrypt_internal+0x385/0xc40 [tls] kasan_report+0xab/0x120 ? decrypt_internal+0x385/0xc40 [tls] kasan_check_range+0xf9/0x1e0 memcpy+0x20/0x60 decrypt_internal+0x385/0xc40 [tls] ? tls_get_rec+0x2e0/0x2e0 [tls] ? process_rx_list+0x1a5/0x420 [tls] ? tls_setup_from_iter.constprop.0+0x2e0/0x2e0 [tls] decrypt_skb_update+0x9d/0x400 [tls] tls_sw_recvmsg+0x3c8/0xb50 [tls] Allocated by task 10911: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x81/0xa0 tls_set_sw_offload+0x2eb/0xa20 [tls] tls_setsockopt+0x68c/0x700 [tls] __sys_setsockopt+0xfe/0x1b0 Replace the crypto_aead_ivsize() with prot->iv_size + prot->salt_size when memcpy() iv value in TLS_1_3_VERSION scenario.
CVE-2024-41935 1 Linux 1 Linux Kernel 2025-09-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to shrink read extent node in batches We use rwlock to protect core structure data of extent tree during its shrink, however, if there is a huge number of extent nodes in extent tree, during shrink of extent tree, it may hold rwlock for a very long time, which may trigger kernel hang issue. This patch fixes to shrink read extent node in batches, so that, critical region of the rwlock can be shrunk to avoid its extreme long time hold.
CVE-2025-23397 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2025-23398 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2025-23399 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2025-23400 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2025-23401 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2025-32454 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.14), Teamcenter Visualization V2312 (All versions < V2312.0010), Teamcenter Visualization V2406 (All versions < V2406.0008), Teamcenter Visualization V2412 (All versions < V2412.0004), Tecnomatix Plant Simulation V2404 (All versions < V2404.0013). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2025-27438 1 Siemens 2 Teamcenter Visualization, Tecnomatix Plant Simulation 2025-09-23 7.8 High
A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
CVE-2022-25883 2 Npmjs, Redhat 10 Semver, Acm, Enterprise Linux and 7 more 2025-09-23 5.3 Medium
Versions of the package semver before 7.5.2 are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
CVE-2021-47633 1 Linux 1 Linux Kernel 2025-09-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ath5k: fix OOB in ath5k_eeprom_read_pcal_info_5111 The bug was found during fuzzing. Stacktrace locates it in ath5k_eeprom_convert_pcal_info_5111. When none of the curve is selected in the loop, idx can go up to AR5K_EEPROM_N_PD_CURVES. The line makes pd out of bound. pd = &chinfo[pier].pd_curves[idx]; There are many OOB writes using pd later in the code. So I added a sanity check for idx. Checks for other loops involving AR5K_EEPROM_N_PD_CURVES are not needed as the loop index is not used outside the loops. The patch is NOT tested with real device. The following is the fuzzing report BUG: KASAN: slab-out-of-bounds in ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] Write of size 1 at addr ffff8880174a4d60 by task modprobe/214 CPU: 0 PID: 214 Comm: modprobe Not tainted 5.6.0 #1 Call Trace: dump_stack+0x76/0xa0 print_address_description.constprop.0+0x16/0x200 ? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] ? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] __kasan_report.cold+0x37/0x7c ? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] kasan_report+0xe/0x20 ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k] ? apic_timer_interrupt+0xa/0x20 ? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k] ? ath5k_pci_eeprom_read+0x228/0x3c0 [ath5k] ath5k_eeprom_init+0x2513/0x6290 [ath5k] ? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k] ? usleep_range+0xb8/0x100 ? apic_timer_interrupt+0xa/0x20 ? ath5k_eeprom_read_pcal_info_2413+0x2f20/0x2f20 [ath5k] ath5k_hw_init+0xb60/0x1970 [ath5k] ath5k_init_ah+0x6fe/0x2530 [ath5k] ? kasprintf+0xa6/0xe0 ? ath5k_stop+0x140/0x140 [ath5k] ? _dev_notice+0xf6/0xf6 ? apic_timer_interrupt+0xa/0x20 ath5k_pci_probe.cold+0x29a/0x3d6 [ath5k] ? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k] ? mutex_lock+0x89/0xd0 ? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k] local_pci_probe+0xd3/0x160 pci_device_probe+0x23f/0x3e0 ? pci_device_remove+0x280/0x280 ? pci_device_remove+0x280/0x280 really_probe+0x209/0x5d0
CVE-2024-56368 1 Linux 1 Linux Kernel 2025-09-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix overflow in __rb_map_vma An overflow occurred when performing the following calculation: nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; Add a check before the calculation to avoid this problem. syzbot reported this as a slab-out-of-bounds in __rb_map_vma: BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058 Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836 CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xc3/0x620 mm/kasan/report.c:489 kasan_report+0xd9/0x110 mm/kasan/report.c:602 __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058 ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138 tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482 call_mmap include/linux/fs.h:2183 [inline] mmap_file mm/internal.h:124 [inline] __mmap_new_file_vma mm/vma.c:2291 [inline] __mmap_new_vma mm/vma.c:2355 [inline] __mmap_region+0x1786/0x2670 mm/vma.c:2456 mmap_region+0x127/0x320 mm/mmap.c:1348 do_mmap+0xc00/0xfc0 mm/mmap.c:496 vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580 ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542 __do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline] __se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline] __x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The reproducer for this bug is: ------------------------8<------------------------- #include <fcntl.h> #include <stdlib.h> #include <unistd.h> #include <asm/types.h> #include <sys/mman.h> int main(int argc, char **argv) { int page_size = getpagesize(); int fd; void *meta; system("echo 1 > /sys/kernel/tracing/buffer_size_kb"); fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY); meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5); } ------------------------>8-------------------------
CVE-2024-52319 1 Linux 1 Linux Kernel 2025-09-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mm: use aligned address in clear_gigantic_page() In current kernel, hugetlb_no_page() calls folio_zero_user() with the fault address. Where the fault address may be not aligned with the huge page size. Then, folio_zero_user() may call clear_gigantic_page() with the address, while clear_gigantic_page() requires the address to be huge page size aligned. So, this may cause memory corruption or information leak, addtional, use more obvious naming 'addr_hint' instead of 'addr' for clear_gigantic_page().
CVE-2024-56805 1 Qnap 2 Qts, Quts Hero 2025-09-23 5.4 Medium
A buffer overflow vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained user access to modify memory or crash processes. We have already fixed the vulnerability in the following versions: QTS 5.2.4.3079 build 20250321 and later QuTS hero h5.2.4.3079 build 20250321 and later
CVE-2024-50403 1 Qnap 2 Qts, Quts Hero 2025-09-23 7.2 High
A use of externally-controlled format string vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to obtain secret data or modify memory. We have already fixed the vulnerability in the following versions: QTS 5.2.2.2950 build 20241114 and later QuTS hero h5.2.2.2952 build 20241116 and later
CVE-2024-50402 1 Qnap 2 Qts, Quts Hero 2025-09-23 7.2 High
A use of externally-controlled format string vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers who have gained administrator access to obtain secret data or modify memory. We have already fixed the vulnerability in the following versions: QTS 5.1.9.2954 build 20241120 and later QTS 5.2.2.2950 build 20241114 and later QuTS hero h5.1.9.2954 build 20241120 and later QuTS hero h5.2.2.2952 build 20241116 and later
CVE-2022-49163 1 Linux 1 Linux Kernel 2025-09-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: fix a bug of accessing array out of bounds When error occurs in parsing jpeg, the slot isn't acquired yet, it may be the default value MXC_MAX_SLOTS. If the driver access the slot using the incorrect slot number, it will access array out of bounds. The result is the driver will change num_domains, which follows slot_data in struct mxc_jpeg_dev. Then the driver won't detach the pm domain at rmmod, which will lead to kernel panic when trying to insmod again.
CVE-2022-49154 1 Linux 1 Linux Kernel 2025-09-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: fix panic on out-of-bounds guest IRQ As guest_irq is coming from KVM_IRQFD API call, it may trigger crash in svm_update_pi_irte() due to out-of-bounds: crash> bt PID: 22218 TASK: ffff951a6ad74980 CPU: 73 COMMAND: "vcpu8" #0 [ffffb1ba6707fa40] machine_kexec at ffffffff8565b397 #1 [ffffb1ba6707fa90] __crash_kexec at ffffffff85788a6d #2 [ffffb1ba6707fb58] crash_kexec at ffffffff8578995d #3 [ffffb1ba6707fb70] oops_end at ffffffff85623c0d #4 [ffffb1ba6707fb90] no_context at ffffffff856692c9 #5 [ffffb1ba6707fbf8] exc_page_fault at ffffffff85f95b51 #6 [ffffb1ba6707fc50] asm_exc_page_fault at ffffffff86000ace [exception RIP: svm_update_pi_irte+227] RIP: ffffffffc0761b53 RSP: ffffb1ba6707fd08 RFLAGS: 00010086 RAX: ffffb1ba6707fd78 RBX: ffffb1ba66d91000 RCX: 0000000000000001 RDX: 00003c803f63f1c0 RSI: 000000000000019a RDI: ffffb1ba66db2ab8 RBP: 000000000000019a R8: 0000000000000040 R9: ffff94ca41b82200 R10: ffffffffffffffcf R11: 0000000000000001 R12: 0000000000000001 R13: 0000000000000001 R14: ffffffffffffffcf R15: 000000000000005f ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffb1ba6707fdb8] kvm_irq_routing_update at ffffffffc09f19a1 [kvm] #8 [ffffb1ba6707fde0] kvm_set_irq_routing at ffffffffc09f2133 [kvm] #9 [ffffb1ba6707fe18] kvm_vm_ioctl at ffffffffc09ef544 [kvm] RIP: 00007f143c36488b RSP: 00007f143a4e04b8 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 00007f05780041d0 RCX: 00007f143c36488b RDX: 00007f05780041d0 RSI: 000000004008ae6a RDI: 0000000000000020 RBP: 00000000000004e8 R8: 0000000000000008 R9: 00007f05780041e0 R10: 00007f0578004560 R11: 0000000000000246 R12: 00000000000004e0 R13: 000000000000001a R14: 00007f1424001c60 R15: 00007f0578003bc0 ORIG_RAX: 0000000000000010 CS: 0033 SS: 002b Vmx have been fix this in commit 3a8b0677fc61 (KVM: VMX: Do not BUG() on out-of-bounds guest IRQ), so we can just copy source from that to fix this.
CVE-2024-48866 1 Qnap 2 Qts, Quts Hero 2025-09-23 5.3 Medium
An improper handling of URL encoding (Hex Encoding) vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow remote attackers to run the system into unexpected state. We have already fixed the vulnerability in the following versions: QTS 5.1.9.2954 build 20241120 and later QTS 5.2.2.2950 build 20241114 and later QuTS hero h5.1.9.2954 build 20241120 and later QuTS hero h5.2.2.2952 build 20241116 and later