| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Edimax EW-7438RPn 1.13 contains an information disclosure vulnerability that exposes WiFi network configuration details through the wlencrypt_wiz.asp file. Attackers can access the script to retrieve sensitive information including WiFi network name and plaintext password stored in device configuration variables. |
| Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Martcode Software Inc. Delta Course Automation allows SQL Injection.This issue affects Delta Course Automation: through 04022026.
NOTE: The vendor was contacted early about this disclosure but did not respond in any way. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing an excessive number of fields with zero‑length values.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing an excessive number of fields with zero‑length values.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet whose length exceeds the maximum expected value.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes an Out-Of-Memory (OOM) condition, resulting in remote termination of Fast-DDS. If t
he fields of PID_IDENTITY_TOKEN or PID_PERMISSION_TOKEN in the DATA Submessage — specifically by tampering with the length
field in readBinaryPropertySeq — are modified, an integer overflow occurs, leading to an OOM during the resize operation.
Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes a heap buffer overflow, resulting in remote termination of Fast-DDS. If the fields
of `PID_IDENTITY_TOKEN` or `PID_PERMISSIONS_TOKEN` in the DATA Submessage are tampered with — specially `readOctetVector`
reads an unchecked `vecsize` that is propagated unchanged into `readData` as the `length` parameter — the attacker-contro
lled `vecsize` can trigger a 32-bit integer overflow during the `length` calculation. That overflow can cause large alloca
tion attempt that quickly leads to OOM, enabling a remotely-triggerable denial-of-service and remote process termination.
Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). ParticipantGenericMessage is the DDS Security control-message container that carries not only the handshake but also on
going security-control traffic after the handshake, such as crypto-token exchange, rekeying, re-authentication, and token
delivery for newly appearing endpoints. On receive, the CDR parser is invoked first and deserializes the `message_data` (i
.e., the `DataHolderSeq`) via the `readParticipantGenericMessage → readDataHolderSeq` path. The `DataHolderSeq` is parsed
sequentially: a sequence count (`uint32`), and for each DataHolder the `class_id` string (e.g. `DDS:Auth:PKI-DH:1.0+Req`),
string properties (a sequence of key/value pairs), and binary properties (a name plus an octet-vector). The parser operat
es at a stateless level and does not know higher-layer state (for example, whether the handshake has already completed), s
o it fully unfolds the structure before distinguishing legitimate from malformed traffic. Because RTPS permits duplicates,
delays, and retransmissions, a receiver must perform at least minimal structural parsing to check identity and sequence n
umbers before discarding or processing a message; the current implementation, however, does not "peek" only at a minimal
header and instead parses the entire `DataHolderSeq`. As a result, prior to versions 3.4.1, 3.3.1, and 2.6.11, this parsi
ng behavior can trigger an out-of-memory condition and remotely terminate the process. Versions 3.4.1, 3.3.1, and 2.6.11 p
atch the issue. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tdpserver modules) allows adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing a maliciously formed field.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, a heap buffer overflow exists in the Fast-DDS DATA_FRAG receive path. An un
authenticated sender can transmit a single malformed RTPS DATA_FRAG packet where `fragmentSize` and `sampleSize` are craft
ed to violate internal assumptions. Due to a 4-byte alignment step during fragment metadata initialization, the code write
s past the end of the allocated payload buffer, causing immediate crash (DoS) and potentially enabling memory corruption (
RCE risk). Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes an Out-Of-Memory (OOM) condition, resulting in remote termination of Fast-DDS. If t
he fields of `PID_IDENTITY_TOKEN` or `PID_PERMISSIONS_TOKEN` in the DATA Submessage are tampered with — specifically by ta
mpering with the the `vecsize` value read by `readOctetVector` — a 32-bit integer overflow can occur, causing `std::vector
::resize` to request an attacker-controlled size and quickly trigger OOM and remote process termination. Versions 3.4.1, 3
.3.1, and 2.6.11 patch the issue. |
| A relative path traversal vulnerability has been identified in the Embedded Solutions Framework in various Lexmark devices. This vulnerability can be leveraged by an attacker to execute arbitrary code as an unprivileged user. |
| An untrusted search path vulnerability has been identified in the Embedded Solutions Framework in various Lexmark devices. This vulnerability can be leveraged by an attacker to execute arbitrary code. |
| A heap-based buffer overflow vulnerability has been identified in the Postscript interpreter in various Lexmark devices. This vulnerability can be leveraged by an attacker to execute arbitrary code as an unprivileged user. |
| When configured as L2TP/IPSec VPN server, Archer AXE75 V1 may accept connections using L2TP without IPSec protection, even when IPSec is enabled. This allows VPN sessions without encryption, exposing data in transit and compromising confidentiality. |
| The All push notification for WP plugin for WordPress is vulnerable to time-based SQL Injection via the 'delete_id' parameter in all versions up to, and including, 1.5.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with administrator-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| Neo4j Enterprise and Community editions versions prior to 2026.01.3 and 5.26.21 are vulnerable to a potential information disclosure by a user who has ability to access the local log files.
The "obfuscate_literals" option in the query logs does not redact error information, exposing unredacted data in the query log when a customer writes a query that fails. It can allow a user with legitimate access to the local log files to obtain information they are not authorised to see. If this user is also in a position to run queries and trigger errors, this vulnerability can potentially help them to infer information they are not authorised to see through their intended database access.
We recommend upgrading to versions 2026.01.3 (or 5.26.21) where the issue is fixed, and reviewing query log files permissions to ensure restricted access. If your configuration had db.logs.query.obfuscate_literals enabled, and you wish the obfuscation to cover the error messages as well, you need to enable the new configuration setting db.logs.query.obfuscate_errors once you have upgraded Neo4j. |
| A vulnerability was identified in lcg0124 BootDo up to e93dd428ef6f5c881aa74d49a2099ab0cf1e0fcb. This affects an unknown part. The manipulation leads to cross-site request forgery. The attack is possible to be carried out remotely. The exploit is publicly available and might be used. This product adopts a rolling release strategy to maintain continuous delivery. Therefore, version details for affected or updated releases cannot be specified. |
| Type Confusion in V8 in Google Chrome prior to 144.0.7559.132 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| A vulnerability exists in an undisclosed BIG-IP Configuration utility page that may allow an attacker to spoof error messages. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |