| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA Merlin Transformers4Rec for all platforms contains a vulnerability where an attacker could cause code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Nsight Visual Studio for Windows contains a vulnerability in Nsight Monitor where an attacker can execute arbitrary code with the same privileges as the NVIDIA Nsight Visual Studio Edition Monitor application. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, data tampering, denial of service, and information disclosure. |
| NVIDIA Nsight Systems for Windows contains a vulnerability in the application’s DLL loading mechanism where an attacker could cause an uncontrolled search path element by exploiting insecure DLL search paths. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service and information disclosure. |
| NVIDIA Nsight Systems for Linux contains a vulnerability in the .run installer, where an attacker could cause an OS command injection by supplying a malicious string to the installation path. A successful exploit of this vulnerability might lead to escalation of privileges, code execution, data tampering, denial of service, and information disclosure. |
| Denial-of-service condition in M-Files Server versions before 25.11.15392.1, before 25.2 LTS SR2 and before 25.8 LTS SR2 allows an authenticated user to cause the MFserver process to crash. |
| telnetd in GNU Inetutils through 2.7 allows remote authentication bypass via a "-f root" value for the USER environment variable. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix NULL deref when deactivating inactive aggregate in qfq_reset
`qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class
itself is active.
Two qfq_class objects may point to the same leaf_qdisc. This happens
when:
1. one QFQ qdisc is attached to the dev as the root qdisc, and
2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get()
/ qdisc_put()) and is pending to be destroyed, as in function
tc_new_tfilter.
When packets are enqueued through the root QFQ qdisc, the shared
leaf_qdisc->q.qlen increases. At the same time, the second QFQ
qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters
qfq_reset() with its own q->q.qlen == 0, but its class's leaf
qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate
an inactive aggregate and trigger a null-deref in qfq_deactivate_agg:
[ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 0.903571] #PF: supervisor write access in kernel mode
[ 0.903860] #PF: error_code(0x0002) - not-present page
[ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0
[ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI
[ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE
[ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014
[ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2))
[ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0
Code starting with the faulting instruction
===========================================
0: 0f 84 4d 01 00 00 je 0x153
6: 48 89 70 18 mov %rsi,0x18(%rax)
a: 8b 4b 10 mov 0x10(%rbx),%ecx
d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx
14: 48 8b 78 08 mov 0x8(%rax),%rdi
18: 48 d3 e2 shl %cl,%rdx
1b: 48 21 f2 and %rsi,%rdx
1e: 48 2b 13 sub (%rbx),%rdx
21: 48 8b 30 mov (%rax),%rsi
24: 48 d3 ea shr %cl,%rdx
27: 8b 4b 18 mov 0x18(%rbx),%ecx
...
[ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246
[ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000
[ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000
[ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000
[ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880
[ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000
[ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0
[ 0.910247] PKRU: 55555554
[ 0.910391] Call Trace:
[ 0.910527] <TASK>
[ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485)
[ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036)
[ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076)
[ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447)
[ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958)
[ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861)
[ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550)
[ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344)
[ 0.912296] ? __alloc_skb (net/core/skbuff.c:706)
[ 0.912484] netlink_sendmsg (net/netlink/af
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: fix signedness in this_len calculation
When importing and using buffers, buf->len is considered unsigned.
However, buf->len is converted to signed int when committing. This can
lead to unexpected behavior if the buffer is large enough to be
interpreted as a negative value. Make min_t calculation unsigned. |
| A flaw was found in coredns. This issue could lead to invalid cache entries returning due to incorrectly implemented caching. |
| A flaw was identified in Keycloak’s OpenID Connect Dynamic Client Registration feature when clients authenticate using private_key_jwt. The issue allows a client to specify an arbitrary jwks_uri, which Keycloak then retrieves without validating the destination. This enables attackers to coerce the Keycloak server into making HTTP requests to internal or restricted network resources. As a result, attackers can probe internal services and cloud metadata endpoints, creating an information disclosure and reconnaissance risk. |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| IBM Concert 1.0.0 through 2.1.0 is vulnerable to malicious file upload by not validating the content of the file uploaded to the web interface. |
| IBM Sterling Connect:Direct for UNIX Container 6.3.0.0 through 6.3.0.6 Interim Fix 016, and 6.4.0.0 through 6.4.0.3 Interim Fix 019 IBM® Sterling Connect:Direct for UNIX contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 7.1.2-13 and 6.9.13-38, a heap buffer overflow vulnerability in the XBM image decoder (ReadXBMImage) allows an attacker to write controlled data past the allocated heap buffer when processing a maliciously crafted image file. Any operation that reads or identifies an image can trigger the overflow, making it exploitable via common image upload and processing pipelines. Versions 7.1.2-13 and 6.9.13-38 fix the issue. |