| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: annotate data-race around dev->work
dev->work can re read locklessly in mISDN_read()
and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations.
BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read
write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1:
misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline]
mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xce/0x140 fs/ioctl.c:583
__x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583
x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0:
mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112
do_loop_readv_writev fs/read_write.c:847 [inline]
vfs_readv+0x3fb/0x690 fs/read_write.c:1020
do_readv+0xe7/0x210 fs/read_write.c:1080
__do_sys_readv fs/read_write.c:1165 [inline]
__se_sys_readv fs/read_write.c:1162 [inline]
__x64_sys_readv+0x45/0x50 fs/read_write.c:1162
x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
value changed: 0x00000000 -> 0x00000001 |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix a race issue related to the operation on bpf_bound_progs list
The netdevsim driver lacks a protection mechanism for operations on the
bpf_bound_progs list. When the nsim_bpf_create_prog() performs
list_add_tail, it is possible that nsim_bpf_destroy_prog() is
simultaneously performs list_del. Concurrent operations on the list may
lead to list corruption and trigger a kernel crash as follows:
[ 417.290971] kernel BUG at lib/list_debug.c:62!
[ 417.290983] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 417.290992] CPU: 10 PID: 168 Comm: kworker/10:1 Kdump: loaded Not tainted 6.19.0-rc5 #1
[ 417.291003] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 417.291007] Workqueue: events bpf_prog_free_deferred
[ 417.291021] RIP: 0010:__list_del_entry_valid_or_report+0xa7/0xc0
[ 417.291034] Code: a8 ff 0f 0b 48 89 fe 48 89 ca 48 c7 c7 48 a1 eb ae e8 ed fb a8 ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 80 a1 eb ae e8 d9 fb a8 ff <0f> 0b 48 89 d1 48 c7 c7 d0 a1 eb ae 48 89 f2 48 89 c6 e8 c2 fb a8
[ 417.291040] RSP: 0018:ffffb16a40807df8 EFLAGS: 00010246
[ 417.291046] RAX: 000000000000006d RBX: ffff8e589866f500 RCX: 0000000000000000
[ 417.291051] RDX: 0000000000000000 RSI: ffff8e59f7b23180 RDI: ffff8e59f7b23180
[ 417.291055] RBP: ffffb16a412c9000 R08: 0000000000000000 R09: 0000000000000003
[ 417.291059] R10: ffffb16a40807c80 R11: ffffffffaf9edce8 R12: ffff8e594427ac20
[ 417.291063] R13: ffff8e59f7b44780 R14: ffff8e58800b7a05 R15: 0000000000000000
[ 417.291074] FS: 0000000000000000(0000) GS:ffff8e59f7b00000(0000) knlGS:0000000000000000
[ 417.291079] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 417.291083] CR2: 00007fc4083efe08 CR3: 00000001c3626006 CR4: 0000000000770ee0
[ 417.291088] PKRU: 55555554
[ 417.291091] Call Trace:
[ 417.291096] <TASK>
[ 417.291103] nsim_bpf_destroy_prog+0x31/0x80 [netdevsim]
[ 417.291154] __bpf_prog_offload_destroy+0x2a/0x80
[ 417.291163] bpf_prog_dev_bound_destroy+0x6f/0xb0
[ 417.291171] bpf_prog_free_deferred+0x18e/0x1a0
[ 417.291178] process_one_work+0x18a/0x3a0
[ 417.291188] worker_thread+0x27b/0x3a0
[ 417.291197] ? __pfx_worker_thread+0x10/0x10
[ 417.291207] kthread+0xe5/0x120
[ 417.291214] ? __pfx_kthread+0x10/0x10
[ 417.291221] ret_from_fork+0x31/0x50
[ 417.291230] ? __pfx_kthread+0x10/0x10
[ 417.291236] ret_from_fork_asm+0x1a/0x30
[ 417.291246] </TASK>
Add a mutex lock, to prevent simultaneous addition and deletion operations
on the list. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zlib: fix the folio leak on S390 hardware acceleration
[BUG]
After commit aa60fe12b4f4 ("btrfs: zlib: refactor S390x HW acceleration
buffer preparation"), we no longer release the folio of the page cache
of folio returned by btrfs_compress_filemap_get_folio() for S390
hardware acceleration path.
[CAUSE]
Before that commit, we call kumap_local() and folio_put() after handling
each folio.
Although the timing is not ideal (it release previous folio at the
beginning of the loop, and rely on some extra cleanup out of the loop),
it at least handles the folio release correctly.
Meanwhile the refactored code is easier to read, it lacks the call to
release the filemap folio.
[FIX]
Add the missing folio_put() for copy_data_into_buffer(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Do not allow userspace to trigger kernel warnings in drm_gem_change_handle_ioctl()
Since GEM bo handles are u32 in the uapi and the internal implementation
uses idr_alloc() which uses int ranges, passing a new handle larger than
INT_MAX trivially triggers a kernel warning:
idr_alloc():
...
if (WARN_ON_ONCE(start < 0))
return -EINVAL;
...
Fix it by rejecting new handles above INT_MAX and at the same time make
the end limit calculation more obvious by moving into int domain. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: fix error propagation in efivar_entry_get()
efivar_entry_get() always returns success even if the underlying
__efivar_entry_get() fails, masking errors.
This may result in uninitialized heap memory being copied to userspace
in the efivarfs_file_read() path.
Fix it by returning the error from __efivar_entry_get(). |
| In the Linux kernel, the following vulnerability has been resolved:
flex_proportions: make fprop_new_period() hardirq safe
Bernd has reported a lockdep splat from flexible proportions code that is
essentially complaining about the following race:
<timer fires>
run_timer_softirq - we are in softirq context
call_timer_fn
writeout_period
fprop_new_period
write_seqcount_begin(&p->sequence);
<hardirq is raised>
...
blk_mq_end_request()
blk_update_request()
ext4_end_bio()
folio_end_writeback()
__wb_writeout_add()
__fprop_add_percpu_max()
if (unlikely(max_frac < FPROP_FRAC_BASE)) {
fprop_fraction_percpu()
seq = read_seqcount_begin(&p->sequence);
- sees odd sequence so loops indefinitely
Note that a deadlock like this is only possible if the bdi has configured
maximum fraction of writeout throughput which is very rare in general but
frequent for example for FUSE bdis. To fix this problem we have to make
sure write section of the sequence counter is irqsafe. |
| The User Language Switch plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 1.6.10 due to missing URL validation on the 'download_language()' function. This makes it possible for authenticated attackers, with Administrator-level access and above, to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services. |
| The ZoomifyWP Free plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'filename' parameter of the 'zoomify' shortcode in all versions up to, and including, 1.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The MailChimp Campaigns plugin for WordPress is vulnerable to Missing Authorization in all versions up to, and including, 3.2.4. This is due to missing capability checks on the `mailchimp_campaigns_manager_disconnect_app` function that is hooked to the AJAX action of the same name. This makes it possible for authenticated attackers, with Subscriber-level access and above, to disconnect the site from its MailChimp synchronization app, disrupting automated email campaigns and marketing integrations. |
| The WP Quick Contact Us plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing nonce validation on the settings update functionality. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
| The Geo Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the URL path in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Super Page Cache plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Activity Log in all versions up to, and including, 5.2.2 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The PixelYourSite PRO plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'pysTrafficSource' parameter and the 'pys_landing_page' parameter in all versions up to, and including, 12.4.0.2 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Ravelry Designs Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'layout' attribute of the 'sb_ravelry_designs' shortcode in all versions up to, and including, 1.0.0. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Magic Login Mail or QR Code plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 2.05. This is due to the plugin storing the magic login QR code image with a predictable, static filename (QR_Code.png) in the publicly accessible WordPress uploads directory during the email sending process. The file is only deleted after wp_mail() completes, creating an exploitable race condition window. This makes it possible for unauthenticated attackers to trigger a login link request for any user, including administrators, and then exploit the race condition between QR code file creation and deletion to obtain the login URL encoded in the QR code, thereby gaining unauthorized access to the targeted user's account. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: virtuser: fix UAF in configfs release path
The gpio-virtuser configfs release path uses guard(mutex) to protect
the device structure. However, the device is freed before the guard
cleanup runs, causing mutex_unlock() to operate on freed memory.
Specifically, gpio_virtuser_device_config_group_release() destroys
the mutex and frees the device while still inside the guard(mutex)
scope. When the function returns, the guard cleanup invokes
mutex_unlock(&dev->lock), resulting in a slab use-after-free.
Limit the mutex lifetime by using a scoped_guard() only around the
activation check, so that the lock is released before mutex_destroy()
and kfree() are called. |
| Caido is a web security auditing toolkit. Prior to 0.55.0, Caido blocks non whitelisted domains to reach out through the 8080 port, and shows Host/IP is not allowed to connect to Caido on all endpoints. But this is bypassable by injecting a X-Forwarded-Host: 127.0.0.1:8080 header. This vulnerability is fixed in 0.55.0. |
| The Address Bar Ads plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the URL Path in all versions up to, and including, 1.0.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. |
| The Easy Form Builder plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on multiple AJAX actions in all versions up to, and including, 3.9.3. This makes it possible for authenticated attackers, with Subscriber-level access and above, to retrieve sensitive form response data, including messages, admin replies, and user information due to a logic error in the authorization check that uses AND (&&) instead of OR (||). |