| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Livewire Filemanager, commonly used in Laravel applications, contains LivewireFilemanagerComponent.php, which does not perform file type and MIME validation, allowing for RCE through upload of a malicious php file that can then be executed via the /storage/ URL if a commonly performed setup process within Laravel applications has been completed. |
| A flaw was found in Go. When FIPS mode is enabled on a system, container runtimes may incorrectly handle certain file paths due to improper validation in the containers/common Go library. This flaw allows an attacker to exploit symbolic links and trick the system into mounting sensitive host directories inside a container. This issue also allows attackers to access critical host files, bypassing the intended isolation between containers and the host system. |
| A misconfiguration flaw was found in Keycloak. This issue can allow an attacker to redirect users to an arbitrary URL if a 'Valid Redirect URI' is set to http://localhost or http://127.0.0.1, enabling sensitive information such as authorization codes to be exposed to the attacker, potentially leading to session hijacking. |
| An Improper Resource Shutdown or Release vulnerability in the SIP ALG of Juniper Networks Junos OS on MX Series with MS-MPC allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS).
When an MX Series device with an MS-MPC is configured with two or more service sets which are both processing SIP calls, a specific sequence of call events will lead to a crash and restart of the MS-MPC.
This issue affects Junos OS:
* all versions before 21.2R3-S9,
* 21.4 versions from 21.4R1,
* 22.2 versions before 22.2R3-S6,
* 22.4 versions before 22.4R3-S6.
As the MS-MPC is EoL after Junos OS 22.4, later versions are not affected.
This issue does not affect MX-SPC3 or SRX Series devices. |
| A null pointer dereference flaw was found in Libtiff via `tif_dirinfo.c`. This issue may allow an attacker to trigger memory allocation failures through certain means, such as restricting the heap space size or injecting faults, causing a segmentation fault. This can cause an application crash, eventually leading to a denial of service. |
| The Librarian contains a information leakage vulnerability through the `web_fetch` tool, which can be used to retrieve arbitrary external content provided by an attacker, which can be used to proxy requests through The Librarian infrastructure. The vendor has fixed the vulnerability in all versions of TheLibrarian. |
| An open redirect vulnerability was found in Keycloak. A specially crafted URL can be constructed where the referrer and referrer_uri parameters are made to trick a user to visit a malicious webpage. A trusted URL can trick users and automation into believing that the URL is safe, when, in fact, it redirects to a malicious server. This issue can result in a victim inadvertently trusting the destination of the redirect, potentially leading to a successful phishing attack or other types of attacks.
Once a crafted URL is made, it can be sent to a Keycloak admin via email for example. This will trigger this vulnerability when the user visits the page and clicks the link. A malicious actor can use this to target users they know are Keycloak admins for further attacks. It may also be possible to bypass other domain-related security checks, such as supplying this as a OAuth redirect uri. The malicious actor can further obfuscate the redirect_uri using URL encoding, to hide the text of the actual malicious website domain. |
| The Librarian contains an internal port scanning vulnerability, facilitated by the `web_fetch` tool, which can be used with SSRF-style behavior to perform GET requests to internal IP addresses and services, enabling scanning of the Hertzner cloud environment that TheLibrarian uses. The vendor has fixed the vulnerability in all affected versions. |
| The Librarian `supervisord` status page can be retrieved by the `web_fetch` tool, which can be used to retrieve running processes within TheLibrarian backend. The vendor has fixed the vulnerability in all affected versions. |
| TheLibrarians web_fetch tool can be used to retrieve the Adminer interface content, which can then be used to log into the internal TheLibrarian backend system. The vendor has fixed the vulnerability in all affected versions. |
| An Incorrect Calculation vulnerability in the Layer 2 Control
Protocol
Daemon (l2cpd) of Juniper Networks Junos OS Evolved allows an unauthenticated network-adjacent attacker flapping the management interface to cause the learning of new MACs over label-switched interfaces (LSI) to stop while generating a flood of logs, resulting in high CPU usage.
When the issue is seen, the following log message will be generated:
op:1 flag:0x6 mac:xx:xx:xx:xx:xx:xx bd:2 ifl:13302 reason:0(REASON_NONE) i-op:6(INTRNL_OP_HW_FORCE_DELETE) status:10 lstatus:10 err:26(GETIFBD_VALIDATE_FAILED) err-reason 4(IFBD_VALIDATE_FAIL_EPOCH_MISMATCH) hw_wr:0x4 ctxsync:0 fwdsync:0 rtt-id:51 p_ifl:0 fwd_nh:0 svlbnh:0 event:- smask:0x100000000 dmask:0x0 mplsmask 0x1 act:0x5800 extf:0x0 pfe-id 0 hw-notif-ifl 13302 programmed-ifl 4294967295 pseudo-vtep underlay-ifl-idx 0 stack:GET_MAC, ALLOCATE_MAC, GET_IFL, GET_IFF, GET_IFBD, STOP,
This issue affects Junos OS Evolved:
* all versions before 21.4R3-S7-EVO,
* from 22.2 before 22.2R3-S4-EVO,
* from 22.3 before 22.3R3-S3-EVO,
* from 22.4 before 22.4R3-S2-EVO,
* from 23.2 before 23.2R2-S1-EVO,
* from 23.4 before 23.4R1-S2-EVO, 23.4R2-EVO. |
| Nu Html Checker (validator.nu) contains a restriction bypass that allows remote attackers to make the server perform arbitrary HTTP/HTTPS requests to internal resources, including localhost services. While the validator implements hostname-based protections to block direct access to localhost and 127.0.0.1, these controls can be bypassed using DNS rebinding techniques or domains that resolve to loopback addresses.This issue affects The Nu Html Checker (vnu): latest (commit 23f090a11bab8d0d4e698f1ffc197a4fe226a9cd). |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: process: fix kernel info leakage
thread_struct's s[12] may contain random kernel memory content, which
may be finally leaked to userspace. This is a security hole. Fix it
by clearing the s[12] array in thread_struct when fork.
As for kthread case, it's better to clear the s[12] array as well. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: addrlabel: fix infoleak when sending struct ifaddrlblmsg to network
When copying a `struct ifaddrlblmsg` to the network, __ifal_reserved
remained uninitialized, resulting in a 1-byte infoleak:
BUG: KMSAN: kernel-network-infoleak in __netdev_start_xmit ./include/linux/netdevice.h:4841
__netdev_start_xmit ./include/linux/netdevice.h:4841
netdev_start_xmit ./include/linux/netdevice.h:4857
xmit_one net/core/dev.c:3590
dev_hard_start_xmit+0x1dc/0x800 net/core/dev.c:3606
__dev_queue_xmit+0x17e8/0x4350 net/core/dev.c:4256
dev_queue_xmit ./include/linux/netdevice.h:3009
__netlink_deliver_tap_skb net/netlink/af_netlink.c:307
__netlink_deliver_tap+0x728/0xad0 net/netlink/af_netlink.c:325
netlink_deliver_tap net/netlink/af_netlink.c:338
__netlink_sendskb net/netlink/af_netlink.c:1263
netlink_sendskb+0x1d9/0x200 net/netlink/af_netlink.c:1272
netlink_unicast+0x56d/0xf50 net/netlink/af_netlink.c:1360
nlmsg_unicast ./include/net/netlink.h:1061
rtnl_unicast+0x5a/0x80 net/core/rtnetlink.c:758
ip6addrlbl_get+0xfad/0x10f0 net/ipv6/addrlabel.c:628
rtnetlink_rcv_msg+0xb33/0x1570 net/core/rtnetlink.c:6082
...
Uninit was created at:
slab_post_alloc_hook+0x118/0xb00 mm/slab.h:742
slab_alloc_node mm/slub.c:3398
__kmem_cache_alloc_node+0x4f2/0x930 mm/slub.c:3437
__do_kmalloc_node mm/slab_common.c:954
__kmalloc_node_track_caller+0x117/0x3d0 mm/slab_common.c:975
kmalloc_reserve net/core/skbuff.c:437
__alloc_skb+0x27a/0xab0 net/core/skbuff.c:509
alloc_skb ./include/linux/skbuff.h:1267
nlmsg_new ./include/net/netlink.h:964
ip6addrlbl_get+0x490/0x10f0 net/ipv6/addrlabel.c:608
rtnetlink_rcv_msg+0xb33/0x1570 net/core/rtnetlink.c:6082
netlink_rcv_skb+0x299/0x550 net/netlink/af_netlink.c:2540
rtnetlink_rcv+0x26/0x30 net/core/rtnetlink.c:6109
netlink_unicast_kernel net/netlink/af_netlink.c:1319
netlink_unicast+0x9ab/0xf50 net/netlink/af_netlink.c:1345
netlink_sendmsg+0xebc/0x10f0 net/netlink/af_netlink.c:1921
...
This patch ensures that the reserved field is always initialized. |
| In ConnectWise PSA versions older than 2026.1, Time Entry notes stored in the Time Entry Audit Trail may be rendered without applying output encoding to certain content. Under specific conditions, this may allow stored script code to execute in the context of a user’s browser when the affected content is displayed. |
| A stack overflow vulnerability exists in the AOS-10 web-based management interface of a Mobility Gateway. Successful exploitation could allow an authenticated malicious actor to execute arbitrary code as a privileged user on the underlying operating system. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, cgroup: Fix kernel BUG in purge_effective_progs
Syzkaller reported a triggered kernel BUG as follows:
------------[ cut here ]------------
kernel BUG at kernel/bpf/cgroup.c:925!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 194 Comm: detach Not tainted 5.19.0-14184-g69dac8e431af #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__cgroup_bpf_detach+0x1f2/0x2a0
Code: 00 e8 92 60 30 00 84 c0 75 d8 4c 89 e0 31 f6 85 f6 74 19 42 f6 84
28 48 05 00 00 02 75 0e 48 8b 80 c0 00 00 00 48 85 c0 75 e5 <0f> 0b 48
8b 0c5
RSP: 0018:ffffc9000055bdb0 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff888100ec0800 RCX: ffffc900000f1000
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff888100ec4578
RBP: 0000000000000000 R08: ffff888100ec0800 R09: 0000000000000040
R10: 0000000000000000 R11: 0000000000000000 R12: ffff888100ec4000
R13: 000000000000000d R14: ffffc90000199000 R15: ffff888100effb00
FS: 00007f68213d2b80(0000) GS:ffff88813bc80000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f74a0e5850 CR3: 0000000102836000 CR4: 00000000000006e0
Call Trace:
<TASK>
cgroup_bpf_prog_detach+0xcc/0x100
__sys_bpf+0x2273/0x2a00
__x64_sys_bpf+0x17/0x20
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f68214dbcb9
Code: 08 44 89 e0 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff8
RSP: 002b:00007ffeb487db68 EFLAGS: 00000246 ORIG_RAX: 0000000000000141
RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f68214dbcb9
RDX: 0000000000000090 RSI: 00007ffeb487db70 RDI: 0000000000000009
RBP: 0000000000000003 R08: 0000000000000012 R09: 0000000b00000003
R10: 00007ffeb487db70 R11: 0000000000000246 R12: 00007ffeb487dc20
R13: 0000000000000004 R14: 0000000000000001 R15: 000055f74a1011b0
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
Repetition steps:
For the following cgroup tree,
root
|
cg1
|
cg2
1. attach prog2 to cg2, and then attach prog1 to cg1, both bpf progs
attach type is NONE or OVERRIDE.
2. write 1 to /proc/thread-self/fail-nth for failslab.
3. detach prog1 for cg1, and then kernel BUG occur.
Failslab injection will cause kmalloc fail and fall back to
purge_effective_progs. The problem is that cg2 have attached another prog,
so when go through cg2 layer, iteration will add pos to 1, and subsequent
operations will be skipped by the following condition, and cg will meet
NULL in the end.
`if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))`
The NULL cg means no link or prog match, this is as expected, and it's not
a bug. So here just skip the no match situation. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| In ConnectWise PSA versions older than 2026.1, certain session cookies were not set with the HttpOnly attribute. In some scenarios, this could allow client-side scripts access to session cookie values. |