| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in libxslt where the attribute type, atype, flags are modified in a way that corrupts internal memory management. When XSLT functions, such as the key() process, result in tree fragments, this corruption prevents the proper cleanup of ID attributes. As a result, the system may access freed memory, causing crashes or enabling attackers to trigger heap corruption. |
| A flaw was found in OpenShift's Telemeter. If certain conditions are in place, an attacker can use a forged token to bypass the issue ("iss") check during JSON web token (JWT) authentication. |
| A flaw was found in Undertow where malformed client requests can trigger server-side stream resets without triggering abuse counters. This issue, referred to as the "MadeYouReset" attack, allows malicious clients to induce excessive server workload by repeatedly causing server-side stream aborts. While not a protocol bug, this highlights a common implementation weakness that can be exploited to cause a denial of service (DoS). |
| A flaw in libsoup’s HTTP header handling allows multiple Host: headers in a request and returns the last occurrence for server-side processing. Common front proxies often honor the first Host: header, so this mismatch can cause vhost confusion where a proxy routes a request to one backend but the backend interprets it as destined for another host. This discrepancy enables request-smuggling style attacks, cache poisoning, or bypassing host-based access controls when an attacker supplies duplicate Host headers. |
| A flaw was identified in the NTLM authentication handling of the libsoup HTTP library, used by GNOME and other applications for network communication. When processing extremely long passwords, an internal size calculation can overflow due to improper use of signed integers. This results in incorrect memory allocation on the stack, followed by unsafe memory copying. As a result, applications using libsoup may crash unexpectedly, creating a denial-of-service risk. |
| Unspecified vulnerability in the ExternalInterface ActionScript functionality in Adobe Flash Player before 10.3.183.67 and 11.x before 11.6.602.171 on Windows and Mac OS X, and before 10.3.183.67 and 11.x before 11.2.202.273 on Linux, allows remote attackers to execute arbitrary code via crafted SWF content, as exploited in the wild in February 2013. |
| A flaw was found in Keycloak's OIDC component in the "checkLoginIframe," which allows unvalidated cross-origin messages. This flaw allows attackers to coordinate and send millions of requests in seconds using simple code, significantly impacting the application's availability without proper origin validation for incoming messages. |
| Lack of error handling in the TCP server in Google's gRPC starting version 1.23 on posix-compatible platforms (ex. Linux) allows an attacker to cause a denial of service by initiating a significant number of connections with the server. Note that gRPC C++ Python, and Ruby are affected, but gRPC Java, and Go are NOT affected. |
| In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: release expired exception dst cached in socket
Dst objects get leaked in ip6_negative_advice() when this function is
executed for an expired IPv6 route located in the exception table. There
are several conditions that must be fulfilled for the leak to occur:
* an ICMPv6 packet indicating a change of the MTU for the path is received,
resulting in an exception dst being created
* a TCP connection that uses the exception dst for routing packets must
start timing out so that TCP begins retransmissions
* after the exception dst expires, the FIB6 garbage collector must not run
before TCP executes ip6_negative_advice() for the expired exception dst
When TCP executes ip6_negative_advice() for an exception dst that has
expired and if no other socket holds a reference to the exception dst, the
refcount of the exception dst is 2, which corresponds to the increment
made by dst_init() and the increment made by the TCP socket for which the
connection is timing out. The refcount made by the socket is never
released. The refcount of the dst is decremented in sk_dst_reset() but
that decrement is counteracted by a dst_hold() intentionally placed just
before the sk_dst_reset() in ip6_negative_advice(). After
ip6_negative_advice() has finished, there is no other object tied to the
dst. The socket lost its reference stored in sk_dst_cache and the dst is
no longer in the exception table. The exception dst becomes a leaked
object.
As a result of this dst leak, an unbalanced refcount is reported for the
loopback device of a net namespace being destroyed under kernels that do
not contain e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"):
unregister_netdevice: waiting for lo to become free. Usage count = 2
Fix the dst leak by removing the dst_hold() in ip6_negative_advice(). The
patch that introduced the dst_hold() in ip6_negative_advice() was
92f1655aa2b22 ("net: fix __dst_negative_advice() race"). But 92f1655aa2b22
merely refactored the code with regards to the dst refcount so the issue
was present even before 92f1655aa2b22. The bug was introduced in
54c1a859efd9f ("ipv6: Don't drop cache route entry unless timer actually
expired.") where the expired cached route is deleted and the sk_dst_cache
member of the socket is set to NULL by calling dst_negative_advice() but
the refcount belonging to the socket is left unbalanced.
The IPv4 version - ipv4_negative_advice() - is not affected by this bug.
When the TCP connection times out ipv4_negative_advice() merely resets the
sk_dst_cache of the socket while decrementing the refcount of the
exception dst. |
| A vulnerability has been identified in keylime where an attacker can exploit this flaw by registering a new agent using a different Trusted Platform Module (TPM) device but claiming an existing agent's unique identifier (UUID). This action overwrites the legitimate agent's identity, enabling the attacker to impersonate the compromised agent and potentially bypass security controls. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: setup queue ->tag_set before initializing hctx
Commit 7b815817aa58 ("blk-mq: add helper for checking if one CPU is mapped to specified hctx")
needs to check queue mapping via tag set in hctx's cpuhp handler.
However, q->tag_set may not be setup yet when the cpuhp handler is
enabled, then kernel oops is triggered.
Fix the issue by setup queue tag_set before initializing hctx. |
| In the Linux kernel, the following vulnerability has been resolved:
fscache: delete fscache_cookie_lru_timer when fscache exits to avoid UAF
The fscache_cookie_lru_timer is initialized when the fscache module
is inserted, but is not deleted when the fscache module is removed.
If timer_reduce() is called before removing the fscache module,
the fscache_cookie_lru_timer will be added to the timer list of
the current cpu. Afterwards, a use-after-free will be triggered
in the softIRQ after removing the fscache module, as follows:
==================================================================
BUG: unable to handle page fault for address: fffffbfff803c9e9
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 21ffea067 P4D 21ffea067 PUD 21ffe6067 PMD 110a7c067 PTE 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Tainted: G W 6.11.0-rc3 #855
Tainted: [W]=WARN
RIP: 0010:__run_timer_base.part.0+0x254/0x8a0
Call Trace:
<IRQ>
tmigr_handle_remote_up+0x627/0x810
__walk_groups.isra.0+0x47/0x140
tmigr_handle_remote+0x1fa/0x2f0
handle_softirqs+0x180/0x590
irq_exit_rcu+0x84/0xb0
sysvec_apic_timer_interrupt+0x6e/0x90
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:default_idle+0xf/0x20
default_idle_call+0x38/0x60
do_idle+0x2b5/0x300
cpu_startup_entry+0x54/0x60
start_secondary+0x20d/0x280
common_startup_64+0x13e/0x148
</TASK>
Modules linked in: [last unloaded: netfs]
==================================================================
Therefore delete fscache_cookie_lru_timer when removing the fscahe module. |
| A flaw was found in the Undertow HTTP server core, which is used in WildFly, JBoss EAP, and other Java applications. The Undertow library fails to properly validate the Host header in incoming HTTP requests.As a result, requests containing malformed or malicious Host headers are processed without rejection, enabling attackers to poison caches, perform internal network scans, or hijack user sessions. |
| A flaw was found in Ansible Automation Platform (AAP). Read-only scoped OAuth2 API Tokens in AAP, are enforced at the Gateway level for Gateway-specific operations. However, this vulnerability allows read-only tokens to perform write operations on backend services (e.g., Controller, Hub, EDA). If this flaw were exploited, an attacker‘s capabilities would only be limited by role based access controls (RBAC). |
| A flaw was found in Keycloak. The Keycloak Authorization header parser is overly permissive regarding the formatting of the "Bearer" authentication scheme. It accepts non-standard characters (such as tabs) as separators and tolerates case variations that deviate from RFC 6750 specifications. |
| A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges. |
| A vulnerability was found in Keycloak-services. Special characters used during e-mail registration may perform SMTP Injection and unexpectedly send short unwanted e-mails. The email is limited to 64 characters (limited local part of the email), so the attack is limited to very shorts emails (subject and little data, the example is 60 chars). This flaw's only direct consequence is an unsolicited email being sent from the Keycloak server. However, this action could be a precursor for more sophisticated attacks. |
| A flaw was found in Keycloak. When an authenticated attacker attempts to merge accounts with another existing account during an identity provider (IdP) login, the attacker will subsequently be prompted to "review profile" information. This vulnerability allows the attacker to modify their email address to match that of a victim's account, triggering a verification email sent to the victim's email address. The attacker's email address is not present in the verification email content, making it a potential phishing opportunity. If the victim clicks the verification link, the attacker can gain access to the victim's account. |
| A vulnerability has been identified in the libarchive library. This flaw can lead to a heap buffer over-read due to the size of a filter block potentially exceeding the Lempel-Ziv-Storer-Schieber (LZSS) window. This means the library may attempt to read beyond the allocated memory buffer, which can result in unpredictable program behavior, crashes (denial of service), or the disclosure of sensitive information from adjacent memory regions. |
| A flaw was found in Infinispan CLI. A sensitive password, decoded from a Base64-encoded Kubernetes secret, is processed in plaintext and included in a command string that may expose the data in an error message when a command is not found. |