| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: init quota for 'old.inode' in 'ext4_rename'
Syzbot found the following issue:
ext4_parse_param: s_want_extra_isize=128
ext4_inode_info_init: s_want_extra_isize=32
ext4_rename: old.inode=ffff88823869a2c8 old.dir=ffff888238699828 new.inode=ffff88823869d7e8 new.dir=ffff888238699828
__ext4_mark_inode_dirty: inode=ffff888238699828 ea_isize=32 want_ea_size=128
__ext4_mark_inode_dirty: inode=ffff88823869a2c8 ea_isize=32 want_ea_size=128
ext4_xattr_block_set: inode=ffff88823869a2c8
------------[ cut here ]------------
WARNING: CPU: 13 PID: 2234 at fs/ext4/xattr.c:2070 ext4_xattr_block_set.cold+0x22/0x980
Modules linked in:
RIP: 0010:ext4_xattr_block_set.cold+0x22/0x980
RSP: 0018:ffff888227d3f3b0 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88823007a000 RCX: 0000000000000000
RDX: 0000000000000a03 RSI: 0000000000000040 RDI: ffff888230078178
RBP: 0000000000000000 R08: 000000000000002c R09: ffffed1075c7df8e
R10: ffff8883ae3efc6b R11: ffffed1075c7df8d R12: 0000000000000000
R13: ffff88823869a2c8 R14: ffff8881012e0460 R15: dffffc0000000000
FS: 00007f350ac1f740(0000) GS:ffff8883ae200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f350a6ed6a0 CR3: 0000000237456000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? ext4_xattr_set_entry+0x3b7/0x2320
? ext4_xattr_block_set+0x0/0x2020
? ext4_xattr_set_entry+0x0/0x2320
? ext4_xattr_check_entries+0x77/0x310
? ext4_xattr_ibody_set+0x23b/0x340
ext4_xattr_move_to_block+0x594/0x720
ext4_expand_extra_isize_ea+0x59a/0x10f0
__ext4_expand_extra_isize+0x278/0x3f0
__ext4_mark_inode_dirty.cold+0x347/0x410
ext4_rename+0xed3/0x174f
vfs_rename+0x13a7/0x2510
do_renameat2+0x55d/0x920
__x64_sys_rename+0x7d/0xb0
do_syscall_64+0x3b/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
As 'ext4_rename' will modify 'old.inode' ctime and mark inode dirty,
which may trigger expand 'extra_isize' and allocate block. If inode
didn't init quota will lead to warning. To solve above issue, init
'old.inode' firstly in 'ext4_rename'. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix null-ptr-deref in ext4_write_info
I caught a null-ptr-deref bug as follows:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339
RIP: 0010:ext4_write_info+0x53/0x1b0
[...]
Call Trace:
dquot_writeback_dquots+0x341/0x9a0
ext4_sync_fs+0x19e/0x800
__sync_filesystem+0x83/0x100
sync_filesystem+0x89/0xf0
generic_shutdown_super+0x79/0x3e0
kill_block_super+0xa1/0x110
deactivate_locked_super+0xac/0x130
deactivate_super+0xb6/0xd0
cleanup_mnt+0x289/0x400
__cleanup_mnt+0x16/0x20
task_work_run+0x11c/0x1c0
exit_to_user_mode_prepare+0x203/0x210
syscall_exit_to_user_mode+0x5b/0x3a0
do_syscall_64+0x59/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
==================================================================
Above issue may happen as follows:
-------------------------------------
exit_to_user_mode_prepare
task_work_run
__cleanup_mnt
cleanup_mnt
deactivate_super
deactivate_locked_super
kill_block_super
generic_shutdown_super
shrink_dcache_for_umount
dentry = sb->s_root
sb->s_root = NULL <--- Here set NULL
sync_filesystem
__sync_filesystem
sb->s_op->sync_fs > ext4_sync_fs
dquot_writeback_dquots
sb->dq_op->write_info > ext4_write_info
ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2)
d_inode(sb->s_root)
s_root->d_inode <--- Null pointer dereference
To solve this problem, we use ext4_journal_start_sb directly
to avoid s_root being used. |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix possible name leaks when rio_add_device() fails
Patch series "rapidio: fix three possible memory leaks".
This patchset fixes three name leaks in error handling.
- patch #1 fixes two name leaks while rio_add_device() fails.
- patch #2 fixes a name leak while rio_register_mport() fails.
This patch (of 2):
If rio_add_device() returns error, the name allocated by dev_set_name()
need be freed. It should use put_device() to give up the reference in the
error path, so that the name can be freed in kobject_cleanup(), and the
'rdev' can be freed in rio_release_dev(). |
| In the Linux kernel, the following vulnerability has been resolved:
floppy: Fix memory leak in do_floppy_init()
A memory leak was reported when floppy_alloc_disk() failed in
do_floppy_init().
unreferenced object 0xffff888115ed25a0 (size 8):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 8 bytes):
00 ac 67 5b 81 88 ff ff ..g[....
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<00000000a87bfa9e>] blk_mq_realloc_tag_set_tags.part.0+0x6f/0x180
[<000000006f02e8b1>] blk_mq_alloc_tag_set+0x573/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810fc30540 (size 32):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<000000006b91eab4>] blk_mq_alloc_tag_set+0x393/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
If the floppy_alloc_disk() failed, disks of current drive will not be set,
thus the lastest allocated set->tag cannot be freed in the error handling
path. A simple call graph shown as below:
floppy_module_init()
floppy_init()
do_floppy_init()
for (drive = 0; drive < N_DRIVE; drive++)
blk_mq_alloc_tag_set()
blk_mq_alloc_tag_set_tags()
blk_mq_realloc_tag_set_tags() # set->tag allocated
floppy_alloc_disk()
blk_mq_alloc_disk() # error occurred, disks failed to allocated
->out_put_disk:
for (drive = 0; drive < N_DRIVE; drive++)
if (!disks[drive][0]) # the last disks is not set and loop break
break;
blk_mq_free_tag_set() # the latest allocated set->tag leaked
Fix this problem by free the set->tag of current drive before jump to
error handling path.
[efremov: added stable list, changed title] |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix oops during encryption
When running xfstests against Azure the following oops occurred on an
arm64 system
Unable to handle kernel write to read-only memory at virtual address
ffff0001221cf000
Mem abort info:
ESR = 0x9600004f
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x0f: level 3 permission fault
Data abort info:
ISV = 0, ISS = 0x0000004f
CM = 0, WnR = 1
swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000
[ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003,
pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787
Internal error: Oops: 9600004f [#1] PREEMPT SMP
...
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
pc : __memcpy+0x40/0x230
lr : scatterwalk_copychunks+0xe0/0x200
sp : ffff800014e92de0
x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008
x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008
x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000
x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014
x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058
x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590
x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580
x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005
x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001
x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000
Call trace:
__memcpy+0x40/0x230
scatterwalk_map_and_copy+0x98/0x100
crypto_ccm_encrypt+0x150/0x180
crypto_aead_encrypt+0x2c/0x40
crypt_message+0x750/0x880
smb3_init_transform_rq+0x298/0x340
smb_send_rqst.part.11+0xd8/0x180
smb_send_rqst+0x3c/0x100
compound_send_recv+0x534/0xbc0
smb2_query_info_compound+0x32c/0x440
smb2_set_ea+0x438/0x4c0
cifs_xattr_set+0x5d4/0x7c0
This is because in scatterwalk_copychunks(), we attempted to write to
a buffer (@sign) that was allocated in the stack (vmalloc area) by
crypt_message() and thus accessing its remaining 8 (x2) bytes ended up
crossing a page boundary.
To simply fix it, we could just pass @sign kmalloc'd from
crypt_message() and then we're done. Luckily, we don't seem to pass
any other vmalloc'd buffers in smb_rqst::rq_iov...
Instead, let's map the correct pages and offsets from vmalloc buffers
as well in cifs_sg_set_buf() and then avoiding such oopses. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vimc: Fix wrong function called when vimc_init() fails
In vimc_init(), when platform_driver_register(&vimc_pdrv) fails,
platform_driver_unregister(&vimc_pdrv) is wrongly called rather than
platform_device_unregister(&vimc_pdev), which causes kernel warning:
Unexpected driver unregister!
WARNING: CPU: 1 PID: 14517 at drivers/base/driver.c:270 driver_unregister+0x8f/0xb0
RIP: 0010:driver_unregister+0x8f/0xb0
Call Trace:
<TASK>
vimc_init+0x7d/0x1000 [vimc]
do_one_initcall+0xd0/0x4e0
do_init_module+0x1cf/0x6b0
load_module+0x65c2/0x7820 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: avoid hci_dev_test_and_set_flag() in mgmt_init_hdev()
syzbot is again reporting attempt to cancel uninitialized work
at mgmt_index_removed() [1], for setting of HCI_MGMT flag from
mgmt_init_hdev() from hci_mgmt_cmd() from hci_sock_sendmsg() can
race with testing of HCI_MGMT flag from mgmt_index_removed() from
hci_sock_bind() due to lack of serialization via hci_dev_lock().
Since mgmt_init_hdev() is called with mgmt_chan_list_lock held, we can
safely split hci_dev_test_and_set_flag() into hci_dev_test_flag() and
hci_dev_set_flag(). Thus, in order to close this race, set HCI_MGMT flag
after INIT_DELAYED_WORK() completed.
This is a local fix based on mgmt_chan_list_lock. Lack of serialization
via hci_dev_lock() might be causing different race conditions somewhere
else. But a global fix based on hci_dev_lock() should deserve a future
patch. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: ensure data length is within supported range
Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer'
to ensure the data length isn't within the supported range. In
particular a data length of 0 is not supported by the hardware and
causes unintended or destructive behaviour.
This limitation becomes obvious when looking at the register
documentation [1]. 4 bits are reserved for DATA_WIDTH and the value
of these 4 bits is used as N + 1, allowing a data length range of
1 <= len <= 16.
Affected by this is the SMBus Quick Operation which works with a data
length of 0. Passing 0 as the length causes an underflow of the value
due to:
(len - 1) & 0xf
and effectively specifying a transfer length of 16 via the registers.
This causes a 16-byte write operation instead of a Quick Write. For
example, on SFP modules without write-protected EEPROM this soft-bricks
them by overwriting some initial bytes.
For completeness, also add a quirk for the zero length.
[1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2 |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix race condition validating r_parent before applying state
Add validation to ensure the cached parent directory inode matches the
directory info in MDS replies. This prevents client-side race conditions
where concurrent operations (e.g. rename) cause r_parent to become stale
between request initiation and reply processing, which could lead to
applying state changes to incorrect directory inodes.
[ idryomov: folded a kerneldoc fixup and a follow-up fix from Alex to
move CEPH_CAP_PIN reference when r_parent is updated:
When the parent directory lock is not held, req->r_parent can become
stale and is updated to point to the correct inode. However, the
associated CEPH_CAP_PIN reference was not being adjusted. The
CEPH_CAP_PIN is a reference on an inode that is tracked for
accounting purposes. Moving this pin is important to keep the
accounting balanced. When the pin was not moved from the old parent
to the new one, it created two problems: The reference on the old,
stale parent was never released, causing a reference leak.
A reference for the new parent was never acquired, creating the risk
of a reference underflow later in ceph_mdsc_release_request(). This
patch corrects the logic by releasing the pin from the old parent and
acquiring it for the new parent when r_parent is switched. This
ensures reference accounting stays balanced. ] |
| In the Linux kernel, the following vulnerability has been resolved:
genetlink: fix genl_bind() invoking bind() after -EPERM
Per family bind/unbind callbacks were introduced to allow families
to track multicast group consumer presence, e.g. to start or stop
producing events depending on listeners.
However, in genl_bind() the bind() callback was invoked even if
capability checks failed and ret was set to -EPERM. This means that
callbacks could run on behalf of unauthorized callers while the
syscall still returned failure to user space.
Fix this by only invoking bind() after "if (ret) break;" check
i.e. after permission checks have succeeded. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: implement NETDEV_UNREGISTER notification handler
syzbot is reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
problem, for j1939 protocol did not have NETDEV_UNREGISTER notification
handler for undoing changes made by j1939_sk_bind().
Commit 25fe97cb7620 ("can: j1939: move j1939_priv_put() into sk_destruct
callback") expects that a call to j1939_priv_put() can be unconditionally
delayed until j1939_sk_sock_destruct() is called. But we need to call
j1939_priv_put() against an extra ref held by j1939_sk_bind() call
(as a part of undoing changes made by j1939_sk_bind()) as soon as
NETDEV_UNREGISTER notification fires (i.e. before j1939_sk_sock_destruct()
is called via j1939_sk_release()). Otherwise, the extra ref on "struct
j1939_priv" held by j1939_sk_bind() call prevents "struct net_device" from
dropping the usage count to 1; making it impossible for
unregister_netdevice() to continue.
[mkl: remove space in front of label] |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix invalid algorithm for encoded extents
The current algorithm sanity checks do not properly apply to new
encoded extents.
Unify the algorithm check with Z_EROFS_COMPRESSION(_RUNTIME)_MAX
and ensure consistency with sbi->available_compr_algs. |
| In the Linux kernel, the following vulnerability has been resolved:
ixgbe: fix incorrect map used in eee linkmode
incorrectly used ixgbe_lp_map in loops intended to populate the
supported and advertised EEE linkmode bitmaps based on ixgbe_ls_map.
This results in incorrect bit setting and potential out-of-bounds
access, since ixgbe_lp_map and ixgbe_ls_map have different sizes
and purposes.
ixgbe_lp_map[i] -> ixgbe_ls_map[i]
Use ixgbe_ls_map for supported and advertised linkmodes, and keep
ixgbe_lp_map usage only for link partner (lp_advertised) mapping. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: microchip-core-qspi: stop checking viability of op->max_freq in supports_op callback
In commit 13529647743d9 ("spi: microchip-core-qspi: Support per spi-mem
operation frequency switches") the logic for checking the viability of
op->max_freq in mchp_coreqspi_setup_clock() was copied into
mchp_coreqspi_supports_op(). Unfortunately, op->max_freq is not valid
when this function is called during probe but is instead zero.
Accordingly, baud_rate_val is calculated to be INT_MAX due to division
by zero, causing probe of the attached memory device to fail.
Seemingly spi-microchip-core-qspi was the only driver that had such a
modification made to its supports_op callback when the per_op_freq
capability was added, so just remove it to restore prior functionality. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: add missing check for rx wcid entries
Non-station wcid entries must not be passed to the rx functions.
In case of the global wcid entry, it could even lead to corruption in the wcid
array due to pointer being casted to struct mt7996_sta_link using container_of. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: fix linked list corruption
Never leave scheduled wcid entries on the temporary on-stack list |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: transfer phy_config_inband() locking responsibility to phylink
Problem description
===================
Lockdep reports a possible circular locking dependency (AB/BA) between
&pl->state_mutex and &phy->lock, as follows.
phylink_resolve() // acquires &pl->state_mutex
-> phylink_major_config()
-> phy_config_inband() // acquires &pl->phydev->lock
whereas all the other call sites where &pl->state_mutex and
&pl->phydev->lock have the locking scheme reversed. Everywhere else,
&pl->phydev->lock is acquired at the top level, and &pl->state_mutex at
the lower level. A clear example is phylink_bringup_phy().
The outlier is the newly introduced phy_config_inband() and the existing
lock order is the correct one. To understand why it cannot be the other
way around, it is sufficient to consider phylink_phy_change(), phylink's
callback from the PHY device's phy->phy_link_change() virtual method,
invoked by the PHY state machine.
phy_link_up() and phy_link_down(), the (indirect) callers of
phylink_phy_change(), are called with &phydev->lock acquired.
Then phylink_phy_change() acquires its own &pl->state_mutex, to
serialize changes made to its pl->phy_state and pl->link_config.
So all other instances of &pl->state_mutex and &phydev->lock must be
consistent with this order.
Problem impact
==============
I think the kernel runs a serious deadlock risk if an existing
phylink_resolve() thread, which results in a phy_config_inband() call,
is concurrent with a phy_link_up() or phy_link_down() call, which will
deadlock on &pl->state_mutex in phylink_phy_change(). Practically
speaking, the impact may be limited by the slow speed of the medium
auto-negotiation protocol, which makes it unlikely for the current state
to still be unresolved when a new one is detected, but I think the
problem is there. Nonetheless, the problem was discovered using lockdep.
Proposed solution
=================
Practically speaking, the phy_config_inband() requirement of having
phydev->lock acquired must transfer to the caller (phylink is the only
caller). There, it must bubble up until immediately before
&pl->state_mutex is acquired, for the cases where that takes place.
Solution details, considerations, notes
=======================================
This is the phy_config_inband() call graph:
sfp_upstream_ops :: connect_phy()
|
v
phylink_sfp_connect_phy()
|
v
phylink_sfp_config_phy()
|
| sfp_upstream_ops :: module_insert()
| |
| v
| phylink_sfp_module_insert()
| |
| | sfp_upstream_ops :: module_start()
| | |
| | v
| | phylink_sfp_module_start()
| | |
| v v
| phylink_sfp_config_optical()
phylink_start() | |
| phylink_resume() v v
| | phylink_sfp_set_config()
| | |
v v v
phylink_mac_initial_config()
| phylink_resolve()
| | phylink_ethtool_ksettings_set()
v v v
phylink_major_config()
|
v
phy_config_inband()
phylink_major_config() caller #1, phylink_mac_initial_config(), does not
acquire &pl->state_mutex nor do its callers. It must acquire
&pl->phydev->lock prior to calling phylink_major_config().
phylink_major_config() caller #2, phylink_resolve() acquires
&pl->state_mutex, thus also needs to acquire &pl->phydev->lock.
phylink_major_config() caller #3, phylink_ethtool_ksettings_set(), is
completely uninteresting, because it only call
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nfs/localio: restore creds before releasing pageio data
Otherwise if the nfsd filecache code releases the nfsd_file
immediately, it can trigger the BUG_ON(cred == current->cred) in
__put_cred() when it puts the nfsd_file->nf_file->f-cred. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc, mm/kasan: respect gfp mask in kasan_populate_vmalloc()
kasan_populate_vmalloc() and its helpers ignore the caller's gfp_mask and
always allocate memory using the hardcoded GFP_KERNEL flag. This makes
them inconsistent with vmalloc(), which was recently extended to support
GFP_NOFS and GFP_NOIO allocations.
Page table allocations performed during shadow population also ignore the
external gfp_mask. To preserve the intended semantics of GFP_NOFS and
GFP_NOIO, wrap the apply_to_page_range() calls into the appropriate
memalloc scope.
xfs calls vmalloc with GFP_NOFS, so this bug could lead to deadlock.
There was a report here
https://lkml.kernel.org/r/686ea951.050a0220.385921.0016.GAE@google.com
This patch:
- Extends kasan_populate_vmalloc() and helpers to take gfp_mask;
- Passes gfp_mask down to alloc_pages_bulk() and __get_free_page();
- Enforces GFP_NOFS/NOIO semantics with memalloc_*_save()/restore()
around apply_to_page_range();
- Updates vmalloc.c and percpu allocator call sites accordingly. |