| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/drv: Fix potential memory leak in drm_dev_init()
drm_dev_init() will add drm_dev_init_release() as a callback. When
drmm_add_action() failed, the release function won't be added. As the
result, the ref cnt added by device_get() in drm_dev_init() won't be put
by drm_dev_init_release(), which leads to the memleak. Use
drmm_add_action_or_reset() instead of drmm_add_action() to prevent
memleak.
unreferenced object 0xffff88810bc0c800 (size 2048):
comm "modprobe", pid 8322, jiffies 4305809845 (age 15.292s)
hex dump (first 32 bytes):
e8 cc c0 0b 81 88 ff ff ff ff ff ff 00 00 00 00 ................
20 24 3c 0c 81 88 ff ff 18 c8 c0 0b 81 88 ff ff $<.............
backtrace:
[<000000007251f72d>] __kmalloc+0x4b/0x1c0
[<0000000045f21f26>] platform_device_alloc+0x2d/0xe0
[<000000004452a479>] platform_device_register_full+0x24/0x1c0
[<0000000089f4ea61>] 0xffffffffa0736051
[<00000000235b2441>] do_one_initcall+0x7a/0x380
[<0000000001a4a177>] do_init_module+0x5c/0x230
[<000000002bf8a8e2>] load_module+0x227d/0x2420
[<00000000637d6d0a>] __do_sys_finit_module+0xd5/0x140
[<00000000c99fc324>] do_syscall_64+0x3f/0x90
[<000000004d85aa77>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| A vulnerability was found in the Infinispan component in Red Hat Data Grid. The REST compare API may have a buffer leak and an out of memory error can occur when sending continual requests with large POST data to the REST API. |
| An issue was discovered in 5.1 before 5.1.14, 4.2 before 4.2.26, and 5.2 before 5.2.8.
NFKC normalization in Python is slow on Windows. As a consequence, `django.http.HttpResponseRedirect`, `django.http.HttpResponsePermanentRedirect`, and the shortcut `django.shortcuts.redirect` were subject to a potential denial-of-service attack via certain inputs with a very large number of Unicode characters.
Earlier, unsupported Django series (such as 5.0.x, 4.1.x, and 3.2.x) were not evaluated and may also be affected.
Django would like to thank Seokchan Yoon for reporting this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix memory leaks in mpi3mr_init_ioc()
Don't allocate memory again when IOC is being reinitialized. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix config page DMA memory leak
A fix for:
DMA-API: pci 0000:83:00.0: device driver has pending DMA allocations while released from device [count=1] |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: smsc75xx: Limit packet length to skb->len
Packet length retrieved from skb data may be larger than
the actual socket buffer length (up to 9026 bytes). In such
case the cloned skb passed up the network stack will leak
kernel memory contents. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix sas_hba.phy memory leak in mpi3mr_remove()
Free mrioc->sas_hba.phy at .remove. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix expander node leak in mpi3mr_remove()
Add a missing resource clean up in .remove. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix throttle_groups memory leak
Add a missing kfree(). |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix a server shutdown leak
Fix a race where kthread_stop() may prevent the threadfn from ever getting
called. If that happens the svc_rqst will not be cleaned up. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix mpi3mr_hba_port memory leak in mpi3mr_remove()
Free mpi3mr_hba_port at .remove. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Remove the /proc/scsi/${proc_name} directory earlier
Remove the /proc/scsi/${proc_name} directory earlier to fix a race
condition between unloading and reloading kernel modules. This fixes a bug
introduced in 2009 by commit 77c019768f06 ("[SCSI] fix /proc memory leak in
the SCSI core").
Fix the following kernel warning:
proc_dir_entry 'scsi/scsi_debug' already registered
WARNING: CPU: 19 PID: 27986 at fs/proc/generic.c:376 proc_register+0x27d/0x2e0
Call Trace:
proc_mkdir+0xb5/0xe0
scsi_proc_hostdir_add+0xb5/0x170
scsi_host_alloc+0x683/0x6c0
sdebug_driver_probe+0x6b/0x2d0 [scsi_debug]
really_probe+0x159/0x540
__driver_probe_device+0xdc/0x230
driver_probe_device+0x4f/0x120
__device_attach_driver+0xef/0x180
bus_for_each_drv+0xe5/0x130
__device_attach+0x127/0x290
device_initial_probe+0x17/0x20
bus_probe_device+0x110/0x130
device_add+0x673/0xc80
device_register+0x1e/0x30
sdebug_add_host_helper+0x1a7/0x3b0 [scsi_debug]
scsi_debug_init+0x64f/0x1000 [scsi_debug]
do_one_initcall+0xd7/0x470
do_init_module+0xe7/0x330
load_module+0x122a/0x12c0
__do_sys_finit_module+0x124/0x1a0
__x64_sys_finit_module+0x46/0x50
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| An issue in KiloView Dual Channel 4k HDMI & 3G-SDI HEVC Video Encoder Firmware v.1.20.0006 allows a remote attacker to cause a denial of service via the systemctrl API System/reFactory component. |
| LibreChat version 0.7.9 is vulnerable to a Denial of Service (DoS) attack due to unbounded parameter values in the `/api/memories` endpoint. The `key` and `value` parameters accept arbitrarily large inputs without proper validation, leading to a null pointer error in the Rust-based backend when excessively large values are submitted. This results in the inability to create new memories, impacting the stability of the service. |
| The etcd package distributed with the Red Hat OpenStack platform has an incomplete fix for CVE-2022-41723. This issue occurs because the etcd package in the Red Hat OpenStack platform is using http://golang.org/x/net/http2 instead of the one provided by Red Hat Enterprise Linux versions, meaning it should be updated at compile time instead. |
| Uncontrolled resource consumption in Windows Remote Desktop Services allows an unauthorized attacker to deny service over a network. |
| A flaw was found in the QEMU disk image utility (qemu-img) 'info' command. A specially crafted image file containing a `json:{}` value describing block devices in QMP could cause the qemu-img process on the host to consume large amounts of memory or CPU time, leading to denial of service or read/write to an existing external file. |
| A vulnerability was found in MariaDB. An OpenVAS port scan on ports 3306 and 4567 allows a malicious remote client to cause a denial of service. |
| A vulnerability was found in Undertow, where URL-encoded request paths can be mishandled during concurrent requests on the AJP listener. This issue arises because the same buffer is used to decode the paths for multiple requests simultaneously, leading to incorrect path information being processed. As a result, the server may attempt to access the wrong path, causing errors such as "404 Not Found" or other application failures. This flaw can potentially lead to a denial of service, as legitimate resources become inaccessible due to the path mix-up. |
| A vulnerability was found in Undertow. This vulnerability impacts a server that supports the wildfly-http-client protocol. Whenever a malicious user opens and closes a connection with the HTTP port of the server and then closes the connection immediately, the server will end with both memory and open file limits exhausted at some point, depending on the amount of memory available.
At HTTP upgrade to remoting, the WriteTimeoutStreamSinkConduit leaks connections if RemotingConnection is closed by Remoting ServerConnectionOpenListener. Because the remoting connection originates in Undertow as part of the HTTP upgrade, there is an external layer to the remoting connection. This connection is unaware of the outermost layer when closing the connection during the connection opening procedure. Hence, the Undertow WriteTimeoutStreamSinkConduit is not notified of the closed connection in this scenario. Because WriteTimeoutStreamSinkConduit creates a timeout task, the whole dependency tree leaks via that task, which is added to XNIO WorkerThread. So, the workerThread points to the Undertow conduit, which contains the connections and causes the leak. |