| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: misaligned: Restrict user access to kernel memory
raw_copy_{to,from}_user() do not call access_ok(), so this code allowed
userspace to access any virtual memory address. |
| In the Linux kernel, the following vulnerability has been resolved:
codetag: debug: mark codetags for poisoned page as empty
When PG_hwpoison pages are freed they are treated differently in
free_pages_prepare() and instead of being released they are isolated.
Page allocation tag counters are decremented at this point since the page
is considered not in use. Later on when such pages are released by
unpoison_memory(), the allocation tag counters will be decremented again
and the following warning gets reported:
[ 113.930443][ T3282] ------------[ cut here ]------------
[ 113.931105][ T3282] alloc_tag was not set
[ 113.931576][ T3282] WARNING: CPU: 2 PID: 3282 at ./include/linux/alloc_tag.h:130 pgalloc_tag_sub.part.66+0x154/0x164
[ 113.932866][ T3282] Modules linked in: hwpoison_inject fuse ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute ip6table_nat ip6table_man4
[ 113.941638][ T3282] CPU: 2 UID: 0 PID: 3282 Comm: madvise11 Kdump: loaded Tainted: G W 6.11.0-rc4-dirty #18
[ 113.943003][ T3282] Tainted: [W]=WARN
[ 113.943453][ T3282] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 113.944378][ T3282] pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 113.945319][ T3282] pc : pgalloc_tag_sub.part.66+0x154/0x164
[ 113.946016][ T3282] lr : pgalloc_tag_sub.part.66+0x154/0x164
[ 113.946706][ T3282] sp : ffff800087093a10
[ 113.947197][ T3282] x29: ffff800087093a10 x28: ffff0000d7a9d400 x27: ffff80008249f0a0
[ 113.948165][ T3282] x26: 0000000000000000 x25: ffff80008249f2b0 x24: 0000000000000000
[ 113.949134][ T3282] x23: 0000000000000001 x22: 0000000000000001 x21: 0000000000000000
[ 113.950597][ T3282] x20: ffff0000c08fcad8 x19: ffff80008251e000 x18: ffffffffffffffff
[ 113.952207][ T3282] x17: 0000000000000000 x16: 0000000000000000 x15: ffff800081746210
[ 113.953161][ T3282] x14: 0000000000000000 x13: 205d323832335420 x12: 5b5d353031313339
[ 113.954120][ T3282] x11: ffff800087093500 x10: 000000000000005d x9 : 00000000ffffffd0
[ 113.955078][ T3282] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008236ba90 x6 : c0000000ffff7fff
[ 113.956036][ T3282] x5 : ffff000b34bf4dc8 x4 : ffff8000820aba90 x3 : 0000000000000001
[ 113.956994][ T3282] x2 : ffff800ab320f000 x1 : 841d1e35ac932e00 x0 : 0000000000000000
[ 113.957962][ T3282] Call trace:
[ 113.958350][ T3282] pgalloc_tag_sub.part.66+0x154/0x164
[ 113.959000][ T3282] pgalloc_tag_sub+0x14/0x1c
[ 113.959539][ T3282] free_unref_page+0xf4/0x4b8
[ 113.960096][ T3282] __folio_put+0xd4/0x120
[ 113.960614][ T3282] folio_put+0x24/0x50
[ 113.961103][ T3282] unpoison_memory+0x4f0/0x5b0
[ 113.961678][ T3282] hwpoison_unpoison+0x30/0x48 [hwpoison_inject]
[ 113.962436][ T3282] simple_attr_write_xsigned.isra.34+0xec/0x1cc
[ 113.963183][ T3282] simple_attr_write+0x38/0x48
[ 113.963750][ T3282] debugfs_attr_write+0x54/0x80
[ 113.964330][ T3282] full_proxy_write+0x68/0x98
[ 113.964880][ T3282] vfs_write+0xdc/0x4d0
[ 113.965372][ T3282] ksys_write+0x78/0x100
[ 113.965875][ T3282] __arm64_sys_write+0x24/0x30
[ 113.966440][ T3282] invoke_syscall+0x7c/0x104
[ 113.966984][ T3282] el0_svc_common.constprop.1+0x88/0x104
[ 113.967652][ T3282] do_el0_svc+0x2c/0x38
[ 113.968893][ T3282] el0_svc+0x3c/0x1b8
[ 113.969379][ T3282] el0t_64_sync_handler+0x98/0xbc
[ 113.969980][ T3282] el0t_64_sync+0x19c/0x1a0
[ 113.970511][ T3282] ---[ end trace 0000000000000000 ]---
To fix this, clear the page tag reference after the page got isolated
and accounted for. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: add check for s->flags in the alloc_tagging_slab_free_hook
When enable CONFIG_MEMCG & CONFIG_KFENCE & CONFIG_KMEMLEAK, the following
warning always occurs,This is because the following call stack occurred:
mem_pool_alloc
kmem_cache_alloc_noprof
slab_alloc_node
kfence_alloc
Once the kfence allocation is successful,slab->obj_exts will not be empty,
because it has already been assigned a value in kfence_init_pool.
Since in the prepare_slab_obj_exts_hook function,we perform a check for
s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE),the alloc_tag_add function
will not be called as a result.Therefore,ref->ct remains NULL.
However,when we call mem_pool_free,since obj_ext is not empty, it
eventually leads to the alloc_tag_sub scenario being invoked. This is
where the warning occurs.
So we should add corresponding checks in the alloc_tagging_slab_free_hook.
For __GFP_NO_OBJ_EXT case,I didn't see the specific case where it's using
kfence,so I won't add the corresponding check in
alloc_tagging_slab_free_hook for now.
[ 3.734349] ------------[ cut here ]------------
[ 3.734807] alloc_tag was not set
[ 3.735129] WARNING: CPU: 4 PID: 40 at ./include/linux/alloc_tag.h:130 kmem_cache_free+0x444/0x574
[ 3.735866] Modules linked in: autofs4
[ 3.736211] CPU: 4 UID: 0 PID: 40 Comm: ksoftirqd/4 Tainted: G W 6.11.0-rc3-dirty #1
[ 3.736969] Tainted: [W]=WARN
[ 3.737258] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 3.737875] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3.738501] pc : kmem_cache_free+0x444/0x574
[ 3.738951] lr : kmem_cache_free+0x444/0x574
[ 3.739361] sp : ffff80008357bb60
[ 3.739693] x29: ffff80008357bb70 x28: 0000000000000000 x27: 0000000000000000
[ 3.740338] x26: ffff80008207f000 x25: ffff000b2eb2fd60 x24: ffff0000c0005700
[ 3.740982] x23: ffff8000804229e4 x22: ffff800082080000 x21: ffff800081756000
[ 3.741630] x20: fffffd7ff8253360 x19: 00000000000000a8 x18: ffffffffffffffff
[ 3.742274] x17: ffff800ab327f000 x16: ffff800083398000 x15: ffff800081756df0
[ 3.742919] x14: 0000000000000000 x13: 205d344320202020 x12: 5b5d373038343337
[ 3.743560] x11: ffff80008357b650 x10: 000000000000005d x9 : 00000000ffffffd0
[ 3.744231] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008237bad0 x6 : c0000000ffff7fff
[ 3.744907] x5 : ffff80008237ba78 x4 : ffff8000820bbad0 x3 : 0000000000000001
[ 3.745580] x2 : 68d66547c09f7800 x1 : 68d66547c09f7800 x0 : 0000000000000000
[ 3.746255] Call trace:
[ 3.746530] kmem_cache_free+0x444/0x574
[ 3.746931] mem_pool_free+0x44/0xf4
[ 3.747306] free_object_rcu+0xc8/0xdc
[ 3.747693] rcu_do_batch+0x234/0x8a4
[ 3.748075] rcu_core+0x230/0x3e4
[ 3.748424] rcu_core_si+0x14/0x1c
[ 3.748780] handle_softirqs+0x134/0x378
[ 3.749189] run_ksoftirqd+0x70/0x9c
[ 3.749560] smpboot_thread_fn+0x148/0x22c
[ 3.749978] kthread+0x10c/0x118
[ 3.750323] ret_from_fork+0x10/0x20
[ 3.750696] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
userfaultfd: fix checks for huge PMDs
Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2.
The pmd_trans_huge() code in mfill_atomic() is wrong in three different
ways depending on kernel version:
1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit
the right two race windows) - I've tested this in a kernel build with
some extra mdelay() calls. See the commit message for a description
of the race scenario.
On older kernels (before 6.5), I think the same bug can even
theoretically lead to accessing transhuge page contents as a page table
if you hit the right 5 narrow race windows (I haven't tested this case).
2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for
detecting PMDs that don't point to page tables.
On older kernels (before 6.5), you'd just have to win a single fairly
wide race to hit this.
I've tested this on 6.1 stable by racing migration (with a mdelay()
patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86
VM, that causes a kernel oops in ptlock_ptr().
3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed
to yank page tables out from under us (though I haven't tested that),
so I think the BUG_ON() checks in mfill_atomic() are just wrong.
I decided to write two separate fixes for these (one fix for bugs 1+2, one
fix for bug 3), so that the first fix can be backported to kernels
affected by bugs 1+2.
This patch (of 2):
This fixes two issues.
I discovered that the following race can occur:
mfill_atomic other thread
============ ============
<zap PMD>
pmdp_get_lockless() [reads none pmd]
<bail if trans_huge>
<if none:>
<pagefault creates transhuge zeropage>
__pte_alloc [no-op]
<zap PMD>
<bail if pmd_trans_huge(*dst_pmd)>
BUG_ON(pmd_none(*dst_pmd))
I have experimentally verified this in a kernel with extra mdelay() calls;
the BUG_ON(pmd_none(*dst_pmd)) triggers.
On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow
pte_offset_map[_lock]() to fail"), this can't lead to anything worse than
a BUG_ON(), since the page table access helpers are actually designed to
deal with page tables concurrently disappearing; but on older kernels
(<=6.4), I think we could probably theoretically race past the two
BUG_ON() checks and end up treating a hugepage as a page table.
The second issue is that, as Qi Zheng pointed out, there are other types
of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs
(in particular, migration PMDs).
On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a
PMD that contains a migration entry (which just requires winning a single,
fairly wide race), it will pass the PMD to pte_offset_map_lock(), which
assumes that the PMD points to a page table.
Breakage follows: First, the kernel tries to take the PTE lock (which will
crash or maybe worse if there is no "struct page" for the address bits in
the migration entry PMD - I think at least on X86 there usually is no
corresponding "struct page" thanks to the PTE inversion mitigation, amd64
looks different).
If that didn't crash, the kernel would next try to write a PTE into what
it wrongly thinks is a page table.
As part of fixing these issues, get rid of the check for pmd_trans_huge()
before __pte_alloc() - that's redundant, we're going to have to check for
that after the __pte_alloc() anyway.
Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Disable coherent dumb buffers without 3d
Coherent surfaces make only sense if the host renders to them using
accelerated apis. Without 3d the entire content of dumb buffers stays
in the guest making all of the extra work they're doing to synchronize
between guest and host useless.
Configurations without 3d also tend to run with very low graphics
memory limits. The pinned console fb, mob cursors and graphical login
manager tend to run out of 16MB graphics memory that those guests use.
Fix it by making sure the coherent dumb buffers are only used on
configs with 3d enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: qcom: x1e80100: Fix special pin offsets
Remove the erroneus 0x100000 offset to prevent the boards from crashing
on pin state setting, as well as for the intended state changes to take
effect. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: fsl_lpuart: mark last busy before uart_add_one_port
With "earlycon initcall_debug=1 loglevel=8" in bootargs, kernel
sometimes boot hang. It is because normal console still is not ready,
but runtime suspend is called, so early console putchar will hang
in waiting TRDE set in UARTSTAT.
The lpuart driver has auto suspend delay set to 3000ms, but during
uart_add_one_port, a child device serial ctrl will added and probed with
its pm runtime enabled(see serial_ctrl.c).
The runtime suspend call path is:
device_add
|-> bus_probe_device
|->device_initial_probe
|->__device_attach
|-> pm_runtime_get_sync(dev->parent);
|-> pm_request_idle(dev);
|-> pm_runtime_put(dev->parent);
So in the end, before normal console ready, the lpuart get runtime
suspended. And earlycon putchar will hang.
To address the issue, mark last busy just after pm_runtime_enable,
three seconds is long enough to switch from bootconsole to normal
console. |
| In the Linux kernel, the following vulnerability has been resolved:
workqueue: Fix spruious data race in __flush_work()
When flushing a work item for cancellation, __flush_work() knows that it
exclusively owns the work item through its PENDING bit. 134874e2eee9
("workqueue: Allow cancel_work_sync() and disable_work() from atomic
contexts on BH work items") added a read of @work->data to determine whether
to use busy wait for BH work items that are being canceled. While the read
is safe when @from_cancel, @work->data was read before testing @from_cancel
to simplify code structure:
data = *work_data_bits(work);
if (from_cancel &&
!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
While the read data was never used if !@from_cancel, this could trigger
KCSAN data race detection spuriously:
==================================================================
BUG: KCSAN: data-race in __flush_work / __flush_work
write to 0xffff8881223aa3e8 of 8 bytes by task 3998 on cpu 0:
instrument_write include/linux/instrumented.h:41 [inline]
___set_bit include/asm-generic/bitops/instrumented-non-atomic.h:28 [inline]
insert_wq_barrier kernel/workqueue.c:3790 [inline]
start_flush_work kernel/workqueue.c:4142 [inline]
__flush_work+0x30b/0x570 kernel/workqueue.c:4178
flush_work kernel/workqueue.c:4229 [inline]
...
read to 0xffff8881223aa3e8 of 8 bytes by task 50 on cpu 1:
__flush_work+0x42a/0x570 kernel/workqueue.c:4188
flush_work kernel/workqueue.c:4229 [inline]
flush_delayed_work+0x66/0x70 kernel/workqueue.c:4251
...
value changed: 0x0000000000400000 -> 0xffff88810006c00d
Reorganize the code so that @from_cancel is tested before @work->data is
accessed. The only problem is triggering KCSAN detection spuriously. This
shouldn't need READ_ONCE() or other access qualifiers.
No functional changes. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "serial: 8250_omap: Set the console genpd always on if no console suspend"
This reverts commit 68e6939ea9ec3d6579eadeab16060339cdeaf940.
Kevin reported that this causes a crash during suspend on platforms that
dont use PM domains. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Disable preemption while updating GPU stats
We forgot to disable preemption around the write_seqcount_begin/end() pair
while updating GPU stats:
[ ] WARNING: CPU: 2 PID: 12 at include/linux/seqlock.h:221 __seqprop_assert.isra.0+0x128/0x150 [v3d]
[ ] Workqueue: v3d_bin drm_sched_run_job_work [gpu_sched]
<...snip...>
[ ] Call trace:
[ ] __seqprop_assert.isra.0+0x128/0x150 [v3d]
[ ] v3d_job_start_stats.isra.0+0x90/0x218 [v3d]
[ ] v3d_bin_job_run+0x23c/0x388 [v3d]
[ ] drm_sched_run_job_work+0x520/0x6d0 [gpu_sched]
[ ] process_one_work+0x62c/0xb48
[ ] worker_thread+0x468/0x5b0
[ ] kthread+0x1c4/0x1e0
[ ] ret_from_fork+0x10/0x20
Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd4_deleg_getattr_conflict in presence of third party lease
It is not safe to dereference fl->c.flc_owner without first confirming
fl->fl_lmops is the expected manager. nfsd4_deleg_getattr_conflict()
tests fl_lmops but largely ignores the result and assumes that flc_owner
is an nfs4_delegation anyway. This is wrong.
With this patch we restore the "!= &nfsd_lease_mng_ops" case to behave
as it did before the change mentioned below. This is the same as the
current code, but without any reference to a possible delegation. |
| In the Linux kernel, the following vulnerability has been resolved:
pktgen: use cpus_read_lock() in pg_net_init()
I have seen the WARN_ON(smp_processor_id() != cpu) firing
in pktgen_thread_worker() during tests.
We must use cpus_read_lock()/cpus_read_unlock()
around the for_each_online_cpu(cpu) loop.
While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btnxpuart: Fix random crash seen while removing driver
This fixes the random kernel crash seen while removing the driver, when
running the load/unload test over multiple iterations.
1) modprobe btnxpuart
2) hciconfig hci0 reset
3) hciconfig (check hci0 interface up with valid BD address)
4) modprobe -r btnxpuart
Repeat steps 1 to 4
The ps_wakeup() call in btnxpuart_close() schedules the psdata->work(),
which gets scheduled after module is removed, causing a kernel crash.
This hidden issue got highlighted after enabling Power Save by default
in 4183a7be7700 (Bluetooth: btnxpuart: Enable Power Save feature on
startup)
The new ps_cleanup() deasserts UART break immediately while closing
serdev device, cancels any scheduled ps_work and destroys the ps_lock
mutex.
[ 85.884604] Unable to handle kernel paging request at virtual address ffffd4a61638f258
[ 85.884624] Mem abort info:
[ 85.884625] ESR = 0x0000000086000007
[ 85.884628] EC = 0x21: IABT (current EL), IL = 32 bits
[ 85.884633] SET = 0, FnV = 0
[ 85.884636] EA = 0, S1PTW = 0
[ 85.884638] FSC = 0x07: level 3 translation fault
[ 85.884642] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000041dd0000
[ 85.884646] [ffffd4a61638f258] pgd=1000000095fff003, p4d=1000000095fff003, pud=100000004823d003, pmd=100000004823e003, pte=0000000000000000
[ 85.884662] Internal error: Oops: 0000000086000007 [#1] PREEMPT SMP
[ 85.890932] Modules linked in: algif_hash algif_skcipher af_alg overlay fsl_jr_uio caam_jr caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine authenc libdes crct10dif_ce polyval_ce polyval_generic snd_soc_imx_spdif snd_soc_imx_card snd_soc_ak5558 snd_soc_ak4458 caam secvio error snd_soc_fsl_spdif snd_soc_fsl_micfil snd_soc_fsl_sai snd_soc_fsl_utils gpio_ir_recv rc_core fuse [last unloaded: btnxpuart(O)]
[ 85.927297] CPU: 1 PID: 67 Comm: kworker/1:3 Tainted: G O 6.1.36+g937b1be4345a #1
[ 85.936176] Hardware name: FSL i.MX8MM EVK board (DT)
[ 85.936182] Workqueue: events 0xffffd4a61638f380
[ 85.936198] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 85.952817] pc : 0xffffd4a61638f258
[ 85.952823] lr : 0xffffd4a61638f258
[ 85.952827] sp : ffff8000084fbd70
[ 85.952829] x29: ffff8000084fbd70 x28: 0000000000000000 x27: 0000000000000000
[ 85.963112] x26: ffffd4a69133f000 x25: ffff4bf1c8540990 x24: ffff4bf215b87305
[ 85.963119] x23: ffff4bf215b87300 x22: ffff4bf1c85409d0 x21: ffff4bf1c8540970
[ 85.977382] x20: 0000000000000000 x19: ffff4bf1c8540880 x18: 0000000000000000
[ 85.977391] x17: 0000000000000000 x16: 0000000000000133 x15: 0000ffffe2217090
[ 85.977399] x14: 0000000000000001 x13: 0000000000000133 x12: 0000000000000139
[ 85.977407] x11: 0000000000000001 x10: 0000000000000a60 x9 : ffff8000084fbc50
[ 85.977417] x8 : ffff4bf215b7d000 x7 : ffff4bf215b83b40 x6 : 00000000000003e8
[ 85.977424] x5 : 00000000410fd030 x4 : 0000000000000000 x3 : 0000000000000000
[ 85.977432] x2 : 0000000000000000 x1 : ffff4bf1c4265880 x0 : 0000000000000000
[ 85.977443] Call trace:
[ 85.977446] 0xffffd4a61638f258
[ 85.977451] 0xffffd4a61638f3e8
[ 85.977455] process_one_work+0x1d4/0x330
[ 85.977464] worker_thread+0x6c/0x430
[ 85.977471] kthread+0x108/0x10c
[ 85.977476] ret_from_fork+0x10/0x20
[ 85.977488] Code: bad PC value
[ 85.977491] ---[ end trace 0000000000000000 ]---
Preset since v6.9.11 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix IPsec RoCE MPV trace call
Prevent the call trace below from happening, by not allowing IPsec
creation over a slave, if master device doesn't support IPsec.
WARNING: CPU: 44 PID: 16136 at kernel/locking/rwsem.c:240 down_read+0x75/0x94
Modules linked in: esp4_offload esp4 act_mirred act_vlan cls_flower sch_ingress mlx5_vdpa vringh vhost_iotlb vdpa mst_pciconf(OE) nfsv3 nfs_acl nfs lockd grace fscache netfs xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 rfkill cuse fuse rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_core_mod ib_umad ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_ipoib iw_cm ib_cm ipmi_ssif intel_rapl_msr intel_rapl_common amd64_edac edac_mce_amd kvm_amd kvm irqbypass crct10dif_pclmul crc32_pclmul mlx5_ib ghash_clmulni_intel sha1_ssse3 dell_smbios ib_uverbs aesni_intel crypto_simd dcdbas wmi_bmof dell_wmi_descriptor cryptd pcspkr ib_core acpi_ipmi sp5100_tco ccp i2c_piix4 ipmi_si ptdma k10temp ipmi_devintf ipmi_msghandler acpi_power_meter acpi_cpufreq ext4 mbcache jbd2 sd_mod t10_pi sg mgag200 drm_kms_helper syscopyarea sysfillrect mlx5_core sysimgblt fb_sys_fops cec
ahci libahci mlxfw drm pci_hyperv_intf libata tg3 sha256_ssse3 tls megaraid_sas i2c_algo_bit psample wmi dm_mirror dm_region_hash dm_log dm_mod [last unloaded: mst_pci]
CPU: 44 PID: 16136 Comm: kworker/44:3 Kdump: loaded Tainted: GOE 5.15.0-20240509.el8uek.uek7_u3_update_v6.6_ipsec_bf.x86_64 #2
Hardware name: Dell Inc. PowerEdge R7525/074H08, BIOS 2.0.3 01/15/2021
Workqueue: events xfrm_state_gc_task
RIP: 0010:down_read+0x75/0x94
Code: 00 48 8b 45 08 65 48 8b 14 25 80 fc 01 00 83 e0 02 48 09 d0 48 83 c8 01 48 89 45 08 5d 31 c0 89 c2 89 c6 89 c7 e9 cb 88 3b 00 <0f> 0b 48 8b 45 08 a8 01 74 b2 a8 02 75 ae 48 89 c2 48 83 ca 02 f0
RSP: 0018:ffffb26387773da8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffa08b658af900 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ff886bc5e1366f2f RDI: 0000000000000000
RBP: ffffa08b658af940 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffa0a9bfb31540
R13: ffffa0a9bfb37900 R14: 0000000000000000 R15: ffffa0a9bfb37905
FS: 0000000000000000(0000) GS:ffffa0a9bfb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055a45ed814e8 CR3: 000000109038a000 CR4: 0000000000350ee0
Call Trace:
<TASK>
? show_trace_log_lvl+0x1d6/0x2f9
? show_trace_log_lvl+0x1d6/0x2f9
? mlx5_devcom_for_each_peer_begin+0x29/0x60 [mlx5_core]
? down_read+0x75/0x94
? __warn+0x80/0x113
? down_read+0x75/0x94
? report_bug+0xa4/0x11d
? handle_bug+0x35/0x8b
? exc_invalid_op+0x14/0x75
? asm_exc_invalid_op+0x16/0x1b
? down_read+0x75/0x94
? down_read+0xe/0x94
mlx5_devcom_for_each_peer_begin+0x29/0x60 [mlx5_core]
mlx5_ipsec_fs_roce_tx_destroy+0xb1/0x130 [mlx5_core]
tx_destroy+0x1b/0xc0 [mlx5_core]
tx_ft_put+0x53/0xc0 [mlx5_core]
mlx5e_xfrm_free_state+0x45/0x90 [mlx5_core]
___xfrm_state_destroy+0x10f/0x1a2
xfrm_state_gc_task+0x81/0xa9
process_one_work+0x1f1/0x3c6
worker_thread+0x53/0x3e4
? process_one_work.cold+0x46/0x3c
kthread+0x127/0x144
? set_kthread_struct+0x60/0x52
ret_from_fork+0x22/0x2d
</TASK>
---[ end trace 5ef7896144d398e1 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Restore lost return in iommu_report_device_fault()
When iommu_report_device_fault gets called with a partial fault it is
supposed to collect the fault into the group and then return.
Instead the return was accidently deleted which results in trying to
process the fault and an eventual crash.
Deleting the return was a typo, put it back. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix double DMA unmapping for XDP_REDIRECT
Remove the dma_unmap_page_attrs() call in the driver's XDP_REDIRECT
code path. This should have been removed when we let the page pool
handle the DMA mapping. This bug causes the warning:
WARNING: CPU: 7 PID: 59 at drivers/iommu/dma-iommu.c:1198 iommu_dma_unmap_page+0xd5/0x100
CPU: 7 PID: 59 Comm: ksoftirqd/7 Tainted: G W 6.8.0-1010-gcp #11-Ubuntu
Hardware name: Dell Inc. PowerEdge R7525/0PYVT1, BIOS 2.15.2 04/02/2024
RIP: 0010:iommu_dma_unmap_page+0xd5/0x100
Code: 89 ee 48 89 df e8 cb f2 69 ff 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 31 f6 31 ff 45 31 c0 e9 ab 17 71 00 <0f> 0b 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9
RSP: 0018:ffffab1fc0597a48 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff99ff838280c8 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffab1fc0597a78 R08: 0000000000000002 R09: ffffab1fc0597c1c
R10: ffffab1fc0597cd3 R11: ffff99ffe375acd8 R12: 00000000e65b9000
R13: 0000000000000050 R14: 0000000000001000 R15: 0000000000000002
FS: 0000000000000000(0000) GS:ffff9a06efb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565c34c37210 CR3: 00000005c7e3e000 CR4: 0000000000350ef0
? show_regs+0x6d/0x80
? __warn+0x89/0x150
? iommu_dma_unmap_page+0xd5/0x100
? report_bug+0x16a/0x190
? handle_bug+0x51/0xa0
? exc_invalid_op+0x18/0x80
? iommu_dma_unmap_page+0xd5/0x100
? iommu_dma_unmap_page+0x35/0x100
dma_unmap_page_attrs+0x55/0x220
? bpf_prog_4d7e87c0d30db711_xdp_dispatcher+0x64/0x9f
bnxt_rx_xdp+0x237/0x520 [bnxt_en]
bnxt_rx_pkt+0x640/0xdd0 [bnxt_en]
__bnxt_poll_work+0x1a1/0x3d0 [bnxt_en]
bnxt_poll+0xaa/0x1e0 [bnxt_en]
__napi_poll+0x33/0x1e0
net_rx_action+0x18a/0x2f0 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix opregion leak
Being part o the display, ideally the setup and cleanup would be done by
display itself. However this is a bigger refactor that needs to be done
on both i915 and xe. For now, just fix the leak:
unreferenced object 0xffff8881a0300008 (size 192):
comm "modprobe", pid 4354, jiffies 4295647021
hex dump (first 32 bytes):
00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............
18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................
backtrace (crc 99260e31):
[<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80
[<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0
[<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe]
[<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe]
[<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe]
[<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe]
[<ffffffff81af6be8>] local_pci_probe+0x48/0xb0
[<ffffffff81af8778>] pci_device_probe+0xc8/0x280
[<ffffffff81d09048>] really_probe+0xf8/0x390
[<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170
[<ffffffff81d09503>] driver_probe_device+0x23/0xb0
[<ffffffff81d097b7>] __driver_attach+0xc7/0x190
[<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0
[<ffffffff81d0851e>] driver_attach+0x1e/0x30
[<ffffffff81d07ac7>] bus_add_driver+0x117/0x250
(cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4) |
| In the Linux kernel, the following vulnerability has been resolved:
ata: pata_macio: Fix DMA table overflow
Kolbjørn and Jonáš reported that their 32-bit PowerMacs were crashing
in pata-macio since commit 09fe2bfa6b83 ("ata: pata_macio: Fix
max_segment_size with PAGE_SIZE == 64K").
For example:
kernel BUG at drivers/ata/pata_macio.c:544!
Oops: Exception in kernel mode, sig: 5 [#1]
BE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2 DEBUG_PAGEALLOC PowerMac
...
NIP pata_macio_qc_prep+0xf4/0x190
LR pata_macio_qc_prep+0xfc/0x190
Call Trace:
0xc1421660 (unreliable)
ata_qc_issue+0x14c/0x2d4
__ata_scsi_queuecmd+0x200/0x53c
ata_scsi_queuecmd+0x50/0xe0
scsi_queue_rq+0x788/0xb1c
__blk_mq_issue_directly+0x58/0xf4
blk_mq_plug_issue_direct+0x8c/0x1b4
blk_mq_flush_plug_list.part.0+0x584/0x5e0
__blk_flush_plug+0xf8/0x194
__submit_bio+0x1b8/0x2e0
submit_bio_noacct_nocheck+0x230/0x304
btrfs_work_helper+0x200/0x338
process_one_work+0x1a8/0x338
worker_thread+0x364/0x4c0
kthread+0x100/0x104
start_kernel_thread+0x10/0x14
That commit increased max_segment_size to 64KB, with the justification
that the SCSI core was already using that size when PAGE_SIZE == 64KB,
and that there was existing logic to split over-sized requests.
However with a sufficiently large request, the splitting logic causes
each sg to be split into two commands in the DMA table, leading to
overflow of the DMA table, triggering the BUG_ON().
With default settings the bug doesn't trigger, because the request size
is limited by max_sectors_kb == 1280, however max_sectors_kb can be
increased, and apparently some distros do that by default using udev
rules.
Fix the bug for 4KB kernels by reverting to the old max_segment_size.
For 64KB kernels the sg_tablesize needs to be halved, to allow for the
possibility that each sg will be split into two. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: fix panic caused by partcmd_update
We find a bug as below:
BUG: unable to handle page fault for address: 00000003
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 358 Comm: bash Tainted: G W I 6.6.0-10893-g60d6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/4
RIP: 0010:partition_sched_domains_locked+0x483/0x600
Code: 01 48 85 d2 74 0d 48 83 05 29 3f f8 03 01 f3 48 0f bc c2 89 c0 48 9
RSP: 0018:ffffc90000fdbc58 EFLAGS: 00000202
RAX: 0000000100000003 RBX: ffff888100b3dfa0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000000000002fe80
RBP: ffff888100b3dfb0 R08: 0000000000000001 R09: 0000000000000000
R10: ffffc90000fdbcb0 R11: 0000000000000004 R12: 0000000000000002
R13: ffff888100a92b48 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f44a5425740(0000) GS:ffff888237d80000(0000) knlGS:0000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000100030973 CR3: 000000010722c000 CR4: 00000000000006e0
Call Trace:
<TASK>
? show_regs+0x8c/0xa0
? __die_body+0x23/0xa0
? __die+0x3a/0x50
? page_fault_oops+0x1d2/0x5c0
? partition_sched_domains_locked+0x483/0x600
? search_module_extables+0x2a/0xb0
? search_exception_tables+0x67/0x90
? kernelmode_fixup_or_oops+0x144/0x1b0
? __bad_area_nosemaphore+0x211/0x360
? up_read+0x3b/0x50
? bad_area_nosemaphore+0x1a/0x30
? exc_page_fault+0x890/0xd90
? __lock_acquire.constprop.0+0x24f/0x8d0
? __lock_acquire.constprop.0+0x24f/0x8d0
? asm_exc_page_fault+0x26/0x30
? partition_sched_domains_locked+0x483/0x600
? partition_sched_domains_locked+0xf0/0x600
rebuild_sched_domains_locked+0x806/0xdc0
update_partition_sd_lb+0x118/0x130
cpuset_write_resmask+0xffc/0x1420
cgroup_file_write+0xb2/0x290
kernfs_fop_write_iter+0x194/0x290
new_sync_write+0xeb/0x160
vfs_write+0x16f/0x1d0
ksys_write+0x81/0x180
__x64_sys_write+0x21/0x30
x64_sys_call+0x2f25/0x4630
do_syscall_64+0x44/0xb0
entry_SYSCALL_64_after_hwframe+0x78/0xe2
RIP: 0033:0x7f44a553c887
It can be reproduced with cammands:
cd /sys/fs/cgroup/
mkdir test
cd test/
echo +cpuset > ../cgroup.subtree_control
echo root > cpuset.cpus.partition
cat /sys/fs/cgroup/cpuset.cpus.effective
0-3
echo 0-3 > cpuset.cpus // taking away all cpus from root
This issue is caused by the incorrect rebuilding of scheduling domains.
In this scenario, test/cpuset.cpus.partition should be an invalid root
and should not trigger the rebuilding of scheduling domains. When calling
update_parent_effective_cpumask with partcmd_update, if newmask is not
null, it should recheck newmask whether there are cpus is available
for parect/cs that has tasks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm, slub: do not call do_slab_free for kfence object
In 782f8906f805 the freeing of kfence objects was moved from deep
inside do_slab_free to the wrapper functions outside. This is a nice
change, but unfortunately it missed one spot in __kmem_cache_free_bulk.
This results in a crash like this:
BUG skbuff_head_cache (Tainted: G S B E ): Padding overwritten. 0xffff88907fea0f00-0xffff88907fea0fff @offset=3840
slab_err (mm/slub.c:1129)
free_to_partial_list (mm/slub.c:? mm/slub.c:4036)
slab_pad_check (mm/slub.c:864 mm/slub.c:1290)
check_slab (mm/slub.c:?)
free_to_partial_list (mm/slub.c:3171 mm/slub.c:4036)
kmem_cache_alloc_bulk (mm/slub.c:? mm/slub.c:4495 mm/slub.c:4586 mm/slub.c:4635)
napi_build_skb (net/core/skbuff.c:348 net/core/skbuff.c:527 net/core/skbuff.c:549)
All the other callers to do_slab_free appear to be ok.
Add a kfence_free check in __kmem_cache_free_bulk to avoid the crash. |