| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink: Initialise extack before use in ACKs
Add missing extack initialisation when ACKing BATCH_BEGIN and BATCH_END. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: gup: stop abusing try_grab_folio
A kernel warning was reported when pinning folio in CMA memory when
launching SEV virtual machine. The splat looks like:
[ 464.325306] WARNING: CPU: 13 PID: 6734 at mm/gup.c:1313 __get_user_pages+0x423/0x520
[ 464.325464] CPU: 13 PID: 6734 Comm: qemu-kvm Kdump: loaded Not tainted 6.6.33+ #6
[ 464.325477] RIP: 0010:__get_user_pages+0x423/0x520
[ 464.325515] Call Trace:
[ 464.325520] <TASK>
[ 464.325523] ? __get_user_pages+0x423/0x520
[ 464.325528] ? __warn+0x81/0x130
[ 464.325536] ? __get_user_pages+0x423/0x520
[ 464.325541] ? report_bug+0x171/0x1a0
[ 464.325549] ? handle_bug+0x3c/0x70
[ 464.325554] ? exc_invalid_op+0x17/0x70
[ 464.325558] ? asm_exc_invalid_op+0x1a/0x20
[ 464.325567] ? __get_user_pages+0x423/0x520
[ 464.325575] __gup_longterm_locked+0x212/0x7a0
[ 464.325583] internal_get_user_pages_fast+0xfb/0x190
[ 464.325590] pin_user_pages_fast+0x47/0x60
[ 464.325598] sev_pin_memory+0xca/0x170 [kvm_amd]
[ 464.325616] sev_mem_enc_register_region+0x81/0x130 [kvm_amd]
Per the analysis done by yangge, when starting the SEV virtual machine, it
will call pin_user_pages_fast(..., FOLL_LONGTERM, ...) to pin the memory.
But the page is in CMA area, so fast GUP will fail then fallback to the
slow path due to the longterm pinnalbe check in try_grab_folio().
The slow path will try to pin the pages then migrate them out of CMA area.
But the slow path also uses try_grab_folio() to pin the page, it will
also fail due to the same check then the above warning is triggered.
In addition, the try_grab_folio() is supposed to be used in fast path and
it elevates folio refcount by using add ref unless zero. We are guaranteed
to have at least one stable reference in slow path, so the simple atomic add
could be used. The performance difference should be trivial, but the
misuse may be confusing and misleading.
Redefined try_grab_folio() to try_grab_folio_fast(), and try_grab_page()
to try_grab_folio(), and use them in the proper paths. This solves both
the abuse and the kernel warning.
The proper naming makes their usecase more clear and should prevent from
abusing in the future.
peterx said:
: The user will see the pin fails, for gpu-slow it further triggers the WARN
: right below that failure (as in the original report):
:
: folio = try_grab_folio(page, page_increm - 1,
: foll_flags);
: if (WARN_ON_ONCE(!folio)) { <------------------------ here
: /*
: * Release the 1st page ref if the
: * folio is problematic, fail hard.
: */
: gup_put_folio(page_folio(page), 1,
: foll_flags);
: ret = -EFAULT;
: goto out;
: }
[1] https://lore.kernel.org/linux-mm/1719478388-31917-1-git-send-email-yangge1116@126.com/
[shy828301@gmail.com: fix implicit declaration of function try_grab_folio_fast] |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: rt5033: Bring back i2c_set_clientdata
Commit 3a93da231c12 ("power: supply: rt5033: Use devm_power_supply_register() helper")
reworked the driver to use devm. While at it, the i2c_set_clientdata
was dropped along with the remove callback. Unfortunately other parts
of the driver also rely on i2c clientdata so this causes kernel oops.
Bring the call back to fix the driver. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tcp: Disable TCP-AO static key after RCU grace period
The lifetime of TCP-AO static_key is the same as the last
tcp_ao_info. On the socket destruction tcp_ao_info ceases to be
with RCU grace period, while tcp-ao static branch is currently deferred
destructed. The static key definition is
: DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ);
which means that if RCU grace period is delayed by more than a second
and tcp_ao_needed is in the process of disablement, other CPUs may
yet see tcp_ao_info which atent dead, but soon-to-be.
And that breaks the assumption of static_key_fast_inc_not_disabled().
See the comment near the definition:
> * The caller must make sure that the static key can't get disabled while
> * in this function. It doesn't patch jump labels, only adds a user to
> * an already enabled static key.
Originally it was introduced in commit eb8c507296f6 ("jump_label:
Prevent key->enabled int overflow"), which is needed for the atomic
contexts, one of which would be the creation of a full socket from a
request socket. In that atomic context, it's known by the presence
of the key (md5/ao) that the static branch is already enabled.
So, the ref counter for that static branch is just incremented
instead of holding the proper mutex.
static_key_fast_inc_not_disabled() is just a helper for such usage
case. But it must not be used if the static branch could get disabled
in parallel as it's not protected by jump_label_mutex and as a result,
races with jump_label_update() implementation details.
Happened on netdev test-bot[1], so not a theoretical issue:
[] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1
[] ------------[ cut here ]------------
[] kernel BUG at arch/x86/kernel/jump_label.c:73!
[] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1
[] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[] Workqueue: events jump_label_update_timeout
[] RIP: 0010:__jump_label_patch+0x2f6/0x350
...
[] Call Trace:
[] <TASK>
[] arch_jump_label_transform_queue+0x6c/0x110
[] __jump_label_update+0xef/0x350
[] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60
[] jump_label_update_timeout+0x2c/0x40
[] process_one_work+0xe3b/0x1670
[] worker_thread+0x587/0xce0
[] kthread+0x28a/0x350
[] ret_from_fork+0x31/0x70
[] ret_from_fork_asm+0x1a/0x30
[] </TASK>
[] Modules linked in: veth
[] ---[ end trace 0000000000000000 ]---
[] RIP: 0010:__jump_label_patch+0x2f6/0x350
[1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix TTLM teardown work
The worker calculates the wrong sdata pointer, so if it ever
runs, it'll crash. Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix invalid memory access while processing fragmented packets
The monitor ring and the reo reinject ring share the same ring mask index.
When the driver receives an interrupt for the reo reinject ring, the
monitor ring is also processed, leading to invalid memory access. Since
monitor support is not yet enabled in ath12k, the ring mask for the monitor
ring should be removed.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00209-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: wow: fix GTK offload H2C skbuff issue
We mistakenly put skb too large and that may exceed skb->end.
Therefore, we fix it.
skbuff: skb_over_panic: text:ffffffffc09e9a9d len:416 put:204 head:ffff8fba04eca780 data:ffff8fba04eca7e0 tail:0x200 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:192!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 4747 Comm: kworker/u4:44 Tainted: G O 6.6.30-02659-gc18865c4dfbd #1 86547039b47e46935493f615ee31d0b2d711d35e
Hardware name: HP Meep/Meep, BIOS Google_Meep.11297.262.0 03/18/2021
Workqueue: events_unbound async_run_entry_fn
RIP: 0010:skb_panic+0x5d/0x60
Code: c6 63 8b 8f bb 4c 0f 45 f6 48 c7 c7 4d 89 8b bb 48 89 ce 44 89 d1 41 56 53 41 53 ff b0 c8 00 00 00 e8 27 5f 23 00 48 83 c4 20 <0f> 0b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44
RSP: 0018:ffffaa700144bad0 EFLAGS: 00010282
RAX: 0000000000000089 RBX: 0000000000000140 RCX: 14432c5aad26c900
RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: 0000000000000001
RBP: ffffaa700144bae0 R08: 0000000000000000 R09: ffffaa700144b920
R10: 00000000ffffdfff R11: ffffffffbc28fbc0 R12: ffff8fba4e57a010
R13: 0000000000000000 R14: ffffffffbb8f8b63 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8fba7bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007999c4ad1000 CR3: 000000015503a000 CR4: 0000000000350ee0
Call Trace:
<TASK>
? __die_body+0x1f/0x70
? die+0x3d/0x60
? do_trap+0xa4/0x110
? skb_panic+0x5d/0x60
? do_error_trap+0x6d/0x90
? skb_panic+0x5d/0x60
? handle_invalid_op+0x30/0x40
? skb_panic+0x5d/0x60
? exc_invalid_op+0x3c/0x50
? asm_exc_invalid_op+0x16/0x20
? skb_panic+0x5d/0x60
skb_put+0x49/0x50
rtw89_fw_h2c_wow_gtk_ofld+0xbd/0x220 [rtw89_core 778b32de31cd1f14df2d6721ae99ba8a83636fa5]
rtw89_wow_resume+0x31f/0x540 [rtw89_core 778b32de31cd1f14df2d6721ae99ba8a83636fa5]
rtw89_ops_resume+0x2b/0xa0 [rtw89_core 778b32de31cd1f14df2d6721ae99ba8a83636fa5]
ieee80211_reconfig+0x84/0x13e0 [mac80211 818a894e3b77da6298269c59ed7cdff065a4ed52]
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d]
? dev_printk_emit+0x51/0x70
? _dev_info+0x6e/0x90
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d]
wiphy_resume+0x89/0x180 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d]
? __pfx_wiphy_resume+0x10/0x10 [cfg80211 1a793119e2aeb157c4ca4091ff8e1d9ae233b59d]
dpm_run_callback+0x3c/0x140
device_resume+0x1f9/0x3c0
? __pfx_dpm_watchdog_handler+0x10/0x10
async_resume+0x1d/0x30
async_run_entry_fn+0x29/0xd0
process_scheduled_works+0x1d8/0x3d0
worker_thread+0x1fc/0x2f0
kthread+0xed/0x110
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x38/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
Modules linked in: ccm 8021q r8153_ecm cdc_ether usbnet r8152 mii dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc uinput rfcomm cmac algif_hash rtw89_8922ae(O) algif_skcipher rtw89_8922a(O) af_alg rtw89_pci(O) rtw89_core(O) btusb(O) snd_soc_sst_bxt_da7219_max98357a btbcm(O) snd_soc_hdac_hdmi btintel(O) snd_soc_intel_hda_dsp_common snd_sof_probes btrtl(O) btmtk(O) snd_hda_codec_hdmi snd_soc_dmic uvcvideo videobuf2_vmalloc uvc videobuf2_memops videobuf2_v4l2 videobuf2_common snd_sof_pci_intel_apl snd_sof_intel_hda_common snd_soc_hdac_hda snd_sof_intel_hda soundwire_intel soundwire_generic_allocation snd_sof_intel_hda_mlink soundwire_cadence snd_sof_pci snd_sof_xtensa_dsp mac80211 snd_soc_acpi_intel_match snd_soc_acpi snd_sof snd_sof_utils soundwire_bus snd_soc_max98357a snd_soc_avs snd_soc_hda_codec snd_hda_ext_core snd_intel_dspcfg snd_intel_sdw_acpi snd_soc_da7219 snd_hda_codec snd_hwdep snd_hda_core veth ip6table_nat xt_MASQUERADE xt_cgroup fuse bluetooth ecdh_generic
cfg80211 ecc
gsmi: Log Shutdown
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix server re-repick on subrequest retry
When a subrequest is marked for needing retry, netfs will call
cifs_prepare_write() which will make cifs repick the server for the op
before renegotiating credits; it then calls cifs_issue_write() which
invokes smb2_async_writev() - which re-repicks the server.
If a different server is then selected, this causes the increment of
server->in_flight to happen against one record and the decrement to happen
against another, leading to misaccounting.
Fix this by just removing the repick code in smb2_async_writev(). As this
is only called from netfslib-driven code, cifs_prepare_write() should
always have been called first, and so server should never be NULL and the
preparatory step is repeated in the event that we do a retry.
The problem manifests as a warning looking something like:
WARNING: CPU: 4 PID: 72896 at fs/smb/client/smb2ops.c:97 smb2_add_credits+0x3f0/0x9e0 [cifs]
...
RIP: 0010:smb2_add_credits+0x3f0/0x9e0 [cifs]
...
smb2_writev_callback+0x334/0x560 [cifs]
cifs_demultiplex_thread+0x77a/0x11b0 [cifs]
kthread+0x187/0x1d0
ret_from_fork+0x34/0x60
ret_from_fork_asm+0x1a/0x30
Which may be triggered by a number of different xfstests running against an
Azure server in multichannel mode. generic/249 seems the most repeatable,
but generic/215, generic/249 and generic/308 may also show it. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: don't unoptimize message in spi_async()
Calling spi_maybe_unoptimize_message() in spi_async() is wrong because
the message is likely to be in the queue and not transferred yet. This
can corrupt the message while it is being used by the controller driver.
spi_maybe_unoptimize_message() is already called in the correct place
in spi_finalize_current_message() to balance the call to
spi_maybe_optimize_message() in spi_async(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray
Patch series "mm/filemap: Limit page cache size to that supported by
xarray", v2.
Currently, xarray can't support arbitrary page cache size. More details
can be found from the WARN_ON() statement in xas_split_alloc(). In our
test whose code is attached below, we hit the WARN_ON() on ARM64 system
where the base page size is 64KB and huge page size is 512MB. The issue
was reported long time ago and some discussions on it can be found here
[1].
[1] https://www.spinics.net/lists/linux-xfs/msg75404.html
In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one
supported by xarray and avoid PMD-sized page cache if needed. The code
changes are suggested by David Hildenbrand.
PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray
PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path
PATCH[4] avoids PMD-sized page cache for shmem files if needed
Test program
============
# cat test.c
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#define TEST_XFS_FILENAME "/tmp/data"
#define TEST_SHMEM_FILENAME "/dev/shm/data"
#define TEST_MEM_SIZE 0x20000000
int main(int argc, char **argv)
{
const char *filename;
int fd = 0;
void *buf = (void *)-1, *p;
int pgsize = getpagesize();
int ret;
if (pgsize != 0x10000) {
fprintf(stderr, "64KB base page size is required\n");
return -EPERM;
}
system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled");
system("rm -fr /tmp/data");
system("rm -fr /dev/shm/data");
system("echo 1 > /proc/sys/vm/drop_caches");
/* Open xfs or shmem file */
filename = TEST_XFS_FILENAME;
if (argc > 1 && !strcmp(argv[1], "shmem"))
filename = TEST_SHMEM_FILENAME;
fd = open(filename, O_CREAT | O_RDWR | O_TRUNC);
if (fd < 0) {
fprintf(stderr, "Unable to open <%s>\n", filename);
return -EIO;
}
/* Extend file size */
ret = ftruncate(fd, TEST_MEM_SIZE);
if (ret) {
fprintf(stderr, "Error %d to ftruncate()\n", ret);
goto cleanup;
}
/* Create VMA */
buf = mmap(NULL, TEST_MEM_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (buf == (void *)-1) {
fprintf(stderr, "Unable to mmap <%s>\n", filename);
goto cleanup;
}
fprintf(stdout, "mapped buffer at 0x%p\n", buf);
ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE);
if (ret) {
fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n");
goto cleanup;
}
/* Populate VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE);
if (ret) {
fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret);
goto cleanup;
}
/* Punch the file to enforce xarray split */
ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
TEST_MEM_SIZE - pgsize, pgsize);
if (ret)
fprintf(stderr, "Error %d to fallocate()\n", ret);
cleanup:
if (buf != (void *)-1)
munmap(buf, TEST_MEM_SIZE);
if (fd > 0)
close(fd);
return 0;
}
# gcc test.c -o test
# cat /proc/1/smaps | grep KernelPageSize | head -n 1
KernelPageSize: 64 kB
# ./test shmem
:
------------[ cut here ]------------
WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \
drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
virtio_net sha1_ce net_failover failover virtio_console virtio_blk \
dimlib virtio_mmio
CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TC
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
filemap: replace pte_offset_map() with pte_offset_map_nolock()
The vmf->ptl in filemap_fault_recheck_pte_none() is still set from
handle_pte_fault(). But at the same time, we did a pte_unmap(vmf->pte).
After a pte_unmap(vmf->pte) unmap and rcu_read_unlock(), the page table
may be racily changed and vmf->ptl maybe fails to protect the actual page
table. Fix this by replacing pte_offset_map() with
pte_offset_map_nolock().
As David said, the PTL pointer might be stale so if we continue to use
it infilemap_fault_recheck_pte_none(), it might trigger UAF. Also, if
the PTL fails, the issue fixed by commit 58f327f2ce80 ("filemap: avoid
unnecessary major faults in filemap_fault()") might reappear. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Add outer runtime_pm protection to xe_live_ktest@xe_dma_buf
Any kunit doing any memory access should get their own runtime_pm
outer references since they don't use the standard driver API
entries. In special this dma_buf from the same driver.
Found by pre-merge CI on adding WARN calls for unprotected
inner callers:
<6> [318.639739] # xe_dma_buf_kunit: running xe_test_dmabuf_import_same_driver
<4> [318.639957] ------------[ cut here ]------------
<4> [318.639967] xe 0000:4d:00.0: Missing outer runtime PM protection
<4> [318.640049] WARNING: CPU: 117 PID: 3832 at drivers/gpu/drm/xe/xe_pm.c:533 xe_pm_runtime_get_noresume+0x48/0x60 [xe] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix may_goto with negative offset.
Zac's syzbot crafted a bpf prog that exposed two bugs in may_goto.
The 1st bug is the way may_goto is patched. When offset is negative
it should be patched differently.
The 2nd bug is in the verifier:
when current state may_goto_depth is equal to visited state may_goto_depth
it means there is an actual infinite loop. It's not correct to prune
exploration of the program at this point.
Note, that this check doesn't limit the program to only one may_goto insn,
since 2nd and any further may_goto will increment may_goto_depth only
in the queued state pushed for future exploration. The current state
will have may_goto_depth == 0 regardless of number of may_goto insns
and the verifier has to explore the program until bpf_exit. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip pipe if the pipe idx not set properly
[why]
Driver crashes when pipe idx not set properly
[how]
Add code to skip the pipe that idx not set properly |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-dma: Only set smem_start is enable per module option
Only export struct fb_info.fix.smem_start if that is required by the
user and the memory does not come from vmalloc().
Setting struct fb_info.fix.smem_start breaks systems where DMA
memory is backed by vmalloc address space. An example error is
shown below.
[ 3.536043] ------------[ cut here ]------------
[ 3.540716] virt_to_phys used for non-linear address: 000000007fc4f540 (0xffff800086001000)
[ 3.552628] WARNING: CPU: 4 PID: 61 at arch/arm64/mm/physaddr.c:12 __virt_to_phys+0x68/0x98
[ 3.565455] Modules linked in:
[ 3.568525] CPU: 4 PID: 61 Comm: kworker/u12:5 Not tainted 6.6.23-06226-g4986cc3e1b75-dirty #250
[ 3.577310] Hardware name: NXP i.MX95 19X19 board (DT)
[ 3.582452] Workqueue: events_unbound deferred_probe_work_func
[ 3.588291] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3.595233] pc : __virt_to_phys+0x68/0x98
[ 3.599246] lr : __virt_to_phys+0x68/0x98
[ 3.603276] sp : ffff800083603990
[ 3.677939] Call trace:
[ 3.680393] __virt_to_phys+0x68/0x98
[ 3.684067] drm_fbdev_dma_helper_fb_probe+0x138/0x238
[ 3.689214] __drm_fb_helper_initial_config_and_unlock+0x2b0/0x4c0
[ 3.695385] drm_fb_helper_initial_config+0x4c/0x68
[ 3.700264] drm_fbdev_dma_client_hotplug+0x8c/0xe0
[ 3.705161] drm_client_register+0x60/0xb0
[ 3.709269] drm_fbdev_dma_setup+0x94/0x148
Additionally, DMA memory is assumed to by contiguous in physical
address space, which is not guaranteed by vmalloc().
Resolve this by checking the module flag drm_leak_fbdev_smem when
DRM allocated the instance of struct fb_info. Fbdev-dma then only
sets smem_start only if required (via FBINFO_HIDE_SMEM_START). Also
guarantee that the framebuffer is not located in vmalloc address
space. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked
When requesting an NMI window, WARN on vNMI support being enabled if and
only if NMIs are actually masked, i.e. if the vCPU is already handling an
NMI. KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of
view) is to inject one NMI and pend the other. When using vNMI, KVM pends
the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the
rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected).
However, if KVM can't immediately inject an NMI, e.g. because the vCPU is
in an STI shadow or is running with GIF=0, then KVM will request an NMI
window and trigger the WARN (but still function correctly).
Whether or not the GIF=0 case makes sense is debatable, as the intent of
KVM's behavior is to provide functionality that is as close to real
hardware as possible. E.g. if two NMIs are sent in quick succession, the
probability of both NMIs arriving in an STI shadow is infinitesimally low
on real hardware, but significantly larger in a virtual environment, e.g.
if the vCPU is preempted in the STI shadow. For GIF=0, the argument isn't
as clear cut, because the window where two NMIs can collide is much larger
in bare metal (though still small).
That said, KVM should not have divergent behavior for the GIF=0 case based
on whether or not vNMI support is enabled. And KVM has allowed
simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a3400
("KVM: Fix simultaneous NMIs"). I.e. KVM's GIF=0 handling shouldn't be
modified without a *really* good reason to do so, and if KVM's behavior
were to be modified, it should be done irrespective of vNMI support. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mc: Fix graph walk in media_pipeline_start
The graph walk tries to follow all links, even if they are not between
pads. This causes a crash with, e.g. a MEDIA_LNK_FL_ANCILLARY_LINK link.
Fix this by allowing the walk to proceed only for MEDIA_LNK_FL_DATA_LINK
links. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mgb4: Fix double debugfs remove
Fixes an error where debugfs_remove_recursive() is called first on a parent
directory and then again on a child which causes a kernel panic.
[hverkuil: added Fixes/Cc tags] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Modify the print level of CQE error
Too much print may lead to a panic in kernel. Change ibdev_err() to
ibdev_err_ratelimited(), and change the printing level of cqe dump
to debug level. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: mediatek: Make sure IPI buffer fits in L2TCM
The IPI buffer location is read from the firmware that we load to the
System Companion Processor, and it's not granted that both the SRAM
(L2TCM) size that is defined in the devicetree node is large enough
for that, and while this is especially true for multi-core SCP, it's
still useful to check on single-core variants as well.
Failing to perform this check may make this driver perform R/W
operations out of the L2TCM boundary, resulting (at best) in a
kernel panic.
To fix that, check that the IPI buffer fits, otherwise return a
failure and refuse to boot the relevant SCP core (or the SCP at
all, if this is single core). |