Search Results (34407 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-26637 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: rely on mac80211 debugfs handling for vif mac80211 started to delete debugfs entries in certain cases, causing a ath11k to crash when it tried to delete the entries later. Fix this by relying on mac80211 to delete the entries when appropriate and adding them from the vif_add_debugfs handler.
CVE-2024-26636 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: llc: make llc_ui_sendmsg() more robust against bonding changes syzbot was able to trick llc_ui_sendmsg(), allocating an skb with no headroom, but subsequently trying to push 14 bytes of Ethernet header [1] Like some others, llc_ui_sendmsg() releases the socket lock before calling sock_alloc_send_skb(). Then it acquires it again, but does not redo all the sanity checks that were performed. This fix: - Uses LL_RESERVED_SPACE() to reserve space. - Check all conditions again after socket lock is held again. - Do not account Ethernet header for mtu limitation. [1] skbuff: skb_under_panic: text:ffff800088baa334 len:1514 put:14 head:ffff0000c9c37000 data:ffff0000c9c36ff2 tail:0x5dc end:0x6c0 dev:bond0 kernel BUG at net/core/skbuff.c:193 ! Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 6875 Comm: syz-executor.0 Not tainted 6.7.0-rc8-syzkaller-00101-g0802e17d9aca-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : skb_panic net/core/skbuff.c:189 [inline] pc : skb_under_panic+0x13c/0x140 net/core/skbuff.c:203 lr : skb_panic net/core/skbuff.c:189 [inline] lr : skb_under_panic+0x13c/0x140 net/core/skbuff.c:203 sp : ffff800096f97000 x29: ffff800096f97010 x28: ffff80008cc8d668 x27: dfff800000000000 x26: ffff0000cb970c90 x25: 00000000000005dc x24: ffff0000c9c36ff2 x23: ffff0000c9c37000 x22: 00000000000005ea x21: 00000000000006c0 x20: 000000000000000e x19: ffff800088baa334 x18: 1fffe000368261ce x17: ffff80008e4ed000 x16: ffff80008a8310f8 x15: 0000000000000001 x14: 1ffff00012df2d58 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000001 x10: 0000000000ff0100 x9 : e28a51f1087e8400 x8 : e28a51f1087e8400 x7 : ffff80008028f8d0 x6 : 0000000000000000 x5 : 0000000000000001 x4 : 0000000000000001 x3 : ffff800082b78714 x2 : 0000000000000001 x1 : 0000000100000000 x0 : 0000000000000089 Call trace: skb_panic net/core/skbuff.c:189 [inline] skb_under_panic+0x13c/0x140 net/core/skbuff.c:203 skb_push+0xf0/0x108 net/core/skbuff.c:2451 eth_header+0x44/0x1f8 net/ethernet/eth.c:83 dev_hard_header include/linux/netdevice.h:3188 [inline] llc_mac_hdr_init+0x110/0x17c net/llc/llc_output.c:33 llc_sap_action_send_xid_c+0x170/0x344 net/llc/llc_s_ac.c:85 llc_exec_sap_trans_actions net/llc/llc_sap.c:153 [inline] llc_sap_next_state net/llc/llc_sap.c:182 [inline] llc_sap_state_process+0x1ec/0x774 net/llc/llc_sap.c:209 llc_build_and_send_xid_pkt+0x12c/0x1c0 net/llc/llc_sap.c:270 llc_ui_sendmsg+0x7bc/0xb1c net/llc/af_llc.c:997 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] sock_sendmsg+0x194/0x274 net/socket.c:767 splice_to_socket+0x7cc/0xd58 fs/splice.c:881 do_splice_from fs/splice.c:933 [inline] direct_splice_actor+0xe4/0x1c0 fs/splice.c:1142 splice_direct_to_actor+0x2a0/0x7e4 fs/splice.c:1088 do_splice_direct+0x20c/0x348 fs/splice.c:1194 do_sendfile+0x4bc/0xc70 fs/read_write.c:1254 __do_sys_sendfile64 fs/read_write.c:1322 [inline] __se_sys_sendfile64 fs/read_write.c:1308 [inline] __arm64_sys_sendfile64+0x160/0x3b4 fs/read_write.c:1308 __invoke_syscall arch/arm64/kernel/syscall.c:37 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:51 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:136 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:155 el0_svc+0x54/0x158 arch/arm64/kernel/entry-common.c:678 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:696 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:595 Code: aa1803e6 aa1903e7 a90023f5 94792f6a (d4210000)
CVE-2024-26627 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Move scsi_host_busy() out of host lock for waking up EH handler Inside scsi_eh_wakeup(), scsi_host_busy() is called & checked with host lock every time for deciding if error handler kthread needs to be waken up. This can be too heavy in case of recovery, such as: - N hardware queues - queue depth is M for each hardware queue - each scsi_host_busy() iterates over (N * M) tag/requests If recovery is triggered in case that all requests are in-flight, each scsi_eh_wakeup() is strictly serialized, when scsi_eh_wakeup() is called for the last in-flight request, scsi_host_busy() has been run for (N * M - 1) times, and request has been iterated for (N*M - 1) * (N * M) times. If both N and M are big enough, hard lockup can be triggered on acquiring host lock, and it is observed on mpi3mr(128 hw queues, queue depth 8169). Fix the issue by calling scsi_host_busy() outside the host lock. We don't need the host lock for getting busy count because host the lock never covers that. [mkp: Drop unnecessary 'busy' variables pointed out by Bart]
CVE-2024-26621 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: huge_memory: don't force huge page alignment on 32 bit commit efa7df3e3bb5 ("mm: align larger anonymous mappings on THP boundaries") caused two issues [1] [2] reported on 32 bit system or compat userspace. It doesn't make too much sense to force huge page alignment on 32 bit system due to the constrained virtual address space. [1] https://lore.kernel.org/linux-mm/d0a136a0-4a31-46bc-adf4-2db109a61672@kernel.org/ [2] https://lore.kernel.org/linux-mm/CAJuCfpHXLdQy1a2B6xN2d7quTYwg2OoZseYPZTRpU0eHHKD-sQ@mail.gmail.com/
CVE-2024-26602 2 Linux, Redhat 9 Linux Kernel, Enterprise Linux, Openshift and 6 more 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/membarrier: reduce the ability to hammer on sys_membarrier On some systems, sys_membarrier can be very expensive, causing overall slowdowns for everything. So put a lock on the path in order to serialize the accesses to prevent the ability for this to be called at too high of a frequency and saturate the machine.
CVE-2024-26601 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: regenerate buddy after block freeing failed if under fc replay This mostly reverts commit 6bd97bf273bd ("ext4: remove redundant mb_regenerate_buddy()") and reintroduces mb_regenerate_buddy(). Based on code in mb_free_blocks(), fast commit replay can end up marking as free blocks that are already marked as such. This causes corruption of the buddy bitmap so we need to regenerate it in that case.
CVE-2022-49004 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: Sync efi page table's kernel mappings before switching The EFI page table is initially created as a copy of the kernel page table. With VMAP_STACK enabled, kernel stacks are allocated in the vmalloc area: if the stack is allocated in a new PGD (one that was not present at the moment of the efi page table creation or not synced in a previous vmalloc fault), the kernel will take a trap when switching to the efi page table when the vmalloc kernel stack is accessed, resulting in a kernel panic. Fix that by updating the efi kernel mappings before switching to the efi page table.
CVE-2022-48997 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: char: tpm: Protect tpm_pm_suspend with locks Currently tpm transactions are executed unconditionally in tpm_pm_suspend() function, which may lead to races with other tpm accessors in the system. Specifically, the hw_random tpm driver makes use of tpm_get_random(), and this function is called in a loop from a kthread, which means it's not frozen alongside userspace, and so can race with the work done during system suspend: tpm tpm0: tpm_transmit: tpm_recv: error -52 tpm tpm0: invalid TPM_STS.x 0xff, dumping stack for forensics CPU: 0 PID: 1 Comm: init Not tainted 6.1.0-rc5+ #135 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-20220807_005459-localhost 04/01/2014 Call Trace: tpm_tis_status.cold+0x19/0x20 tpm_transmit+0x13b/0x390 tpm_transmit_cmd+0x20/0x80 tpm1_pm_suspend+0xa6/0x110 tpm_pm_suspend+0x53/0x80 __pnp_bus_suspend+0x35/0xe0 __device_suspend+0x10f/0x350 Fix this by calling tpm_try_get_ops(), which itself is a wrapper around tpm_chip_start(), but takes the appropriate mutex. [Jason: reworked commit message, added metadata]
CVE-2022-48996 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes() Commit da87878010e5 ("mm/damon/sysfs: support online inputs update") made 'damon_sysfs_set_schemes()' to be called for running DAMON context, which could have schemes. In the case, DAMON sysfs interface is supposed to update, remove, or add schemes to reflect the sysfs files. However, the code is assuming the DAMON context wouldn't have schemes at all, and therefore creates and adds new schemes. As a result, the code doesn't work as intended for online schemes tuning and could have more than expected memory footprint. The schemes are all in the DAMON context, so it doesn't leak the memory, though. Remove the wrong asssumption (the DAMON context wouldn't have schemes) in 'damon_sysfs_set_schemes()' to fix the bug.
CVE-2022-48985 1 Linux 1 Linux Kernel 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix race on per-CQ variable napi work_done After calling napi_complete_done(), the NAPIF_STATE_SCHED bit may be cleared, and another CPU can start napi thread and access per-CQ variable, cq->work_done. If the other thread (for example, from busy_poll) sets it to a value >= budget, this thread will continue to run when it should stop, and cause memory corruption and panic. To fix this issue, save the per-CQ work_done variable in a local variable before napi_complete_done(), so it won't be corrupted by a possible concurrent thread after napi_complete_done(). Also, add a flag bit to advertise to the NIC firmware: the NAPI work_done variable race is fixed, so the driver is able to reliably support features like busy_poll.
CVE-2022-48974 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: fix using __this_cpu_add in preemptible Currently in nf_conntrack_hash_check_insert(), when it fails in nf_ct_ext_valid_pre/post(), NF_CT_STAT_INC() will be called in the preemptible context, a call trace can be triggered: BUG: using __this_cpu_add() in preemptible [00000000] code: conntrack/1636 caller is nf_conntrack_hash_check_insert+0x45/0x430 [nf_conntrack] Call Trace: <TASK> dump_stack_lvl+0x33/0x46 check_preemption_disabled+0xc3/0xf0 nf_conntrack_hash_check_insert+0x45/0x430 [nf_conntrack] ctnetlink_create_conntrack+0x3cd/0x4e0 [nf_conntrack_netlink] ctnetlink_new_conntrack+0x1c0/0x450 [nf_conntrack_netlink] nfnetlink_rcv_msg+0x277/0x2f0 [nfnetlink] netlink_rcv_skb+0x50/0x100 nfnetlink_rcv+0x65/0x144 [nfnetlink] netlink_unicast+0x1ae/0x290 netlink_sendmsg+0x257/0x4f0 sock_sendmsg+0x5f/0x70 This patch is to fix it by changing to use NF_CT_STAT_INC_ATOMIC() for nf_ct_ext_valid_pre/post() check in nf_conntrack_hash_check_insert(), as well as nf_ct_ext_valid_post() in __nf_conntrack_confirm(). Note that nf_ct_ext_valid_pre() check in __nf_conntrack_confirm() is safe to use NF_CT_STAT_INC(), as it's under local_bh_disable().
CVE-2022-48971 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix not cleanup led when bt_init fails bt_init() calls bt_leds_init() to register led, but if it fails later, bt_leds_cleanup() is not called to unregister it. This can cause panic if the argument "bluetooth-power" in text is freed and then another led_trigger_register() tries to access it: BUG: unable to handle page fault for address: ffffffffc06d3bc0 RIP: 0010:strcmp+0xc/0x30 Call Trace: <TASK> led_trigger_register+0x10d/0x4f0 led_trigger_register_simple+0x7d/0x100 bt_init+0x39/0xf7 [bluetooth] do_one_initcall+0xd0/0x4e0
CVE-2022-48926 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: rndis: add spinlock for rndis response list There's no lock for rndis response list. It could cause list corruption if there're two different list_add at the same time like below. It's better to add in rndis_add_response / rndis_free_response / rndis_get_next_response to prevent any race condition on response list. [ 361.894299] [1: irq/191-dwc3:16979] list_add corruption. next->prev should be prev (ffffff80651764d0), but was ffffff883dc36f80. (next=ffffff80651764d0). [ 361.904380] [1: irq/191-dwc3:16979] Call trace: [ 361.904391] [1: irq/191-dwc3:16979] __list_add_valid+0x74/0x90 [ 361.904401] [1: irq/191-dwc3:16979] rndis_msg_parser+0x168/0x8c0 [ 361.904409] [1: irq/191-dwc3:16979] rndis_command_complete+0x24/0x84 [ 361.904417] [1: irq/191-dwc3:16979] usb_gadget_giveback_request+0x20/0xe4 [ 361.904426] [1: irq/191-dwc3:16979] dwc3_gadget_giveback+0x44/0x60 [ 361.904434] [1: irq/191-dwc3:16979] dwc3_ep0_complete_data+0x1e8/0x3a0 [ 361.904442] [1: irq/191-dwc3:16979] dwc3_ep0_interrupt+0x29c/0x3dc [ 361.904450] [1: irq/191-dwc3:16979] dwc3_process_event_entry+0x78/0x6cc [ 361.904457] [1: irq/191-dwc3:16979] dwc3_process_event_buf+0xa0/0x1ec [ 361.904465] [1: irq/191-dwc3:16979] dwc3_thread_interrupt+0x34/0x5c
CVE-2022-48910 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ipv6: ensure we call ipv6_mc_down() at most once There are two reasons for addrconf_notify() to be called with NETDEV_DOWN: either the network device is actually going down, or IPv6 was disabled on the interface. If either of them stays down while the other is toggled, we repeatedly call the code for NETDEV_DOWN, including ipv6_mc_down(), while never calling the corresponding ipv6_mc_up() in between. This will cause a new entry in idev->mc_tomb to be allocated for each multicast group the interface is subscribed to, which in turn leaks one struct ifmcaddr6 per nontrivial multicast group the interface is subscribed to. The following reproducer will leak at least $n objects: ip addr add ff2e::4242/32 dev eth0 autojoin sysctl -w net.ipv6.conf.eth0.disable_ipv6=1 for i in $(seq 1 $n); do ip link set up eth0; ip link set down eth0 done Joining groups with IPV6_ADD_MEMBERSHIP (unprivileged) or setting the sysctl net.ipv6.conf.eth0.forwarding to 1 (=> subscribing to ff02::2) can also be used to create a nontrivial idev->mc_list, which will the leak objects with the right up-down-sequence. Based on both sources for NETDEV_DOWN events the interface IPv6 state should be considered: - not ready if the network interface is not ready OR IPv6 is disabled for it - ready if the network interface is ready AND IPv6 is enabled for it The functions ipv6_mc_up() and ipv6_down() should only be run when this state changes. Implement this by remembering when the IPv6 state is ready, and only run ipv6_mc_down() if it actually changed from ready to not ready. The other direction (not ready -> ready) already works correctly, as: - the interface notification triggered codepath for NETDEV_UP / NETDEV_CHANGE returns early if ipv6 is disabled, and - the disable_ipv6=0 triggered codepath skips fully initializing the interface as long as addrconf_link_ready(dev) returns false - calling ipv6_mc_up() repeatedly does not leak anything
CVE-2022-48903 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix relocation crash due to premature return from btrfs_commit_transaction() We are seeing crashes similar to the following trace: [38.969182] WARNING: CPU: 20 PID: 2105 at fs/btrfs/relocation.c:4070 btrfs_relocate_block_group+0x2dc/0x340 [btrfs] [38.973556] CPU: 20 PID: 2105 Comm: btrfs Not tainted 5.17.0-rc4 #54 [38.974580] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [38.976539] RIP: 0010:btrfs_relocate_block_group+0x2dc/0x340 [btrfs] [38.980336] RSP: 0000:ffffb0dd42e03c20 EFLAGS: 00010206 [38.981218] RAX: ffff96cfc4ede800 RBX: ffff96cfc3ce0000 RCX: 000000000002ca14 [38.982560] RDX: 0000000000000000 RSI: 4cfd109a0bcb5d7f RDI: ffff96cfc3ce0360 [38.983619] RBP: ffff96cfc309c000 R08: 0000000000000000 R09: 0000000000000000 [38.984678] R10: ffff96cec0000001 R11: ffffe84c80000000 R12: ffff96cfc4ede800 [38.985735] R13: 0000000000000000 R14: 0000000000000000 R15: ffff96cfc3ce0360 [38.987146] FS: 00007f11c15218c0(0000) GS:ffff96d6dfb00000(0000) knlGS:0000000000000000 [38.988662] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [38.989398] CR2: 00007ffc922c8e60 CR3: 00000001147a6001 CR4: 0000000000370ee0 [38.990279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [38.991219] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [38.992528] Call Trace: [38.992854] <TASK> [38.993148] btrfs_relocate_chunk+0x27/0xe0 [btrfs] [38.993941] btrfs_balance+0x78e/0xea0 [btrfs] [38.994801] ? vsnprintf+0x33c/0x520 [38.995368] ? __kmalloc_track_caller+0x351/0x440 [38.996198] btrfs_ioctl_balance+0x2b9/0x3a0 [btrfs] [38.997084] btrfs_ioctl+0x11b0/0x2da0 [btrfs] [38.997867] ? mod_objcg_state+0xee/0x340 [38.998552] ? seq_release+0x24/0x30 [38.999184] ? proc_nr_files+0x30/0x30 [38.999654] ? call_rcu+0xc8/0x2f0 [39.000228] ? __x64_sys_ioctl+0x84/0xc0 [39.000872] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [39.001973] __x64_sys_ioctl+0x84/0xc0 [39.002566] do_syscall_64+0x3a/0x80 [39.003011] entry_SYSCALL_64_after_hwframe+0x44/0xae [39.003735] RIP: 0033:0x7f11c166959b [39.007324] RSP: 002b:00007fff2543e998 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [39.008521] RAX: ffffffffffffffda RBX: 00007f11c1521698 RCX: 00007f11c166959b [39.009833] RDX: 00007fff2543ea40 RSI: 00000000c4009420 RDI: 0000000000000003 [39.011270] RBP: 0000000000000003 R08: 0000000000000013 R09: 00007f11c16f94e0 [39.012581] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff25440df3 [39.014046] R13: 0000000000000000 R14: 00007fff2543ea40 R15: 0000000000000001 [39.015040] </TASK> [39.015418] ---[ end trace 0000000000000000 ]--- [43.131559] ------------[ cut here ]------------ [43.132234] kernel BUG at fs/btrfs/extent-tree.c:2717! [43.133031] invalid opcode: 0000 [#1] PREEMPT SMP PTI [43.133702] CPU: 1 PID: 1839 Comm: btrfs Tainted: G W 5.17.0-rc4 #54 [43.134863] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [43.136426] RIP: 0010:unpin_extent_range+0x37a/0x4f0 [btrfs] [43.139913] RSP: 0000:ffffb0dd4216bc70 EFLAGS: 00010246 [43.140629] RAX: 0000000000000000 RBX: ffff96cfc34490f8 RCX: 0000000000000001 [43.141604] RDX: 0000000080000001 RSI: 0000000051d00000 RDI: 00000000ffffffff [43.142645] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff96cfd07dca50 [43.143669] R10: ffff96cfc46e8a00 R11: fffffffffffec000 R12: 0000000041d00000 [43.144657] R13: ffff96cfc3ce0000 R14: ffffb0dd4216bd08 R15: 0000000000000000 [43.145686] FS: 00007f7657dd68c0(0000) GS:ffff96d6df640000(0000) knlGS:0000000000000000 [43.146808] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [43.147584] CR2: 00007f7fe81bf5b0 CR3: 00000001093ee004 CR4: 0000000000370ee0 [43.148589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [43.149581] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 00000000000 ---truncated---
CVE-2022-48897 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64/mm: fix incorrect file_map_count for invalid pmd The page table check trigger BUG_ON() unexpectedly when split hugepage: ------------[ cut here ]------------ kernel BUG at mm/page_table_check.c:119! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 7 PID: 210 Comm: transhuge-stres Not tainted 6.1.0-rc3+ #748 Hardware name: linux,dummy-virt (DT) pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : page_table_check_set.isra.0+0x398/0x468 lr : page_table_check_set.isra.0+0x1c0/0x468 [...] Call trace: page_table_check_set.isra.0+0x398/0x468 __page_table_check_pte_set+0x160/0x1c0 __split_huge_pmd_locked+0x900/0x1648 __split_huge_pmd+0x28c/0x3b8 unmap_page_range+0x428/0x858 unmap_single_vma+0xf4/0x1c8 zap_page_range+0x2b0/0x410 madvise_vma_behavior+0xc44/0xe78 do_madvise+0x280/0x698 __arm64_sys_madvise+0x90/0xe8 invoke_syscall.constprop.0+0xdc/0x1d8 do_el0_svc+0xf4/0x3f8 el0_svc+0x58/0x120 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x19c/0x1a0 [...] On arm64, pmd_leaf() will return true even if the pmd is invalid due to pmd_present_invalid() check. So in pmdp_invalidate() the file_map_count will not only decrease once but also increase once. Then in set_pte_at(), the file_map_count increase again, and so trigger BUG_ON() unexpectedly. Add !pmd_present_invalid() check in pmd_user_accessible_page() to fix the problem.
CVE-2022-48887 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Remove rcu locks from user resources User resource lookups used rcu to avoid two extra atomics. Unfortunately the rcu paths were buggy and it was easy to make the driver crash by submitting command buffers from two different threads. Because the lookups never show up in performance profiles replace them with a regular spin lock which fixes the races in accesses to those shared resources. Fixes kernel oops'es in IGT's vmwgfx execution_buffer stress test and seen crashes with apps using shared resources.
CVE-2022-48848 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tracing/osnoise: Do not unregister events twice Nicolas reported that using: # trace-cmd record -e all -M 10 -p osnoise --poll Resulted in the following kernel warning: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1217 at kernel/tracepoint.c:404 tracepoint_probe_unregister+0x280/0x370 [...] CPU: 0 PID: 1217 Comm: trace-cmd Not tainted 5.17.0-rc6-next-20220307-nico+ #19 RIP: 0010:tracepoint_probe_unregister+0x280/0x370 [...] CR2: 00007ff919b29497 CR3: 0000000109da4005 CR4: 0000000000170ef0 Call Trace: <TASK> osnoise_workload_stop+0x36/0x90 tracing_set_tracer+0x108/0x260 tracing_set_trace_write+0x94/0xd0 ? __check_object_size.part.0+0x10a/0x150 ? selinux_file_permission+0x104/0x150 vfs_write+0xb5/0x290 ksys_write+0x5f/0xe0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7ff919a18127 [...] ---[ end trace 0000000000000000 ]--- The warning complains about an attempt to unregister an unregistered tracepoint. This happens on trace-cmd because it first stops tracing, and then switches the tracer to nop. Which is equivalent to: # cd /sys/kernel/tracing/ # echo osnoise > current_tracer # echo 0 > tracing_on # echo nop > current_tracer The osnoise tracer stops the workload when no trace instance is actually collecting data. This can be caused both by disabling tracing or disabling the tracer itself. To avoid unregistering events twice, use the existing trace_osnoise_callback_enabled variable to check if the events (and the workload) are actually active before trying to deactivate them.
CVE-2022-48808 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix panic when DSA master device unbinds on shutdown Rafael reports that on a system with LX2160A and Marvell DSA switches, if a reboot occurs while the DSA master (dpaa2-eth) is up, the following panic can be seen: systemd-shutdown[1]: Rebooting. Unable to handle kernel paging request at virtual address 00a0000800000041 [00a0000800000041] address between user and kernel address ranges Internal error: Oops: 96000004 [#1] PREEMPT SMP CPU: 6 PID: 1 Comm: systemd-shutdow Not tainted 5.16.5-00042-g8f5585009b24 #32 pc : dsa_slave_netdevice_event+0x130/0x3e4 lr : raw_notifier_call_chain+0x50/0x6c Call trace: dsa_slave_netdevice_event+0x130/0x3e4 raw_notifier_call_chain+0x50/0x6c call_netdevice_notifiers_info+0x54/0xa0 __dev_close_many+0x50/0x130 dev_close_many+0x84/0x120 unregister_netdevice_many+0x130/0x710 unregister_netdevice_queue+0x8c/0xd0 unregister_netdev+0x20/0x30 dpaa2_eth_remove+0x68/0x190 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver_internal+0xac/0xb0 device_links_unbind_consumers+0xd4/0x100 __device_release_driver+0x94/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_device_remove+0x24/0x40 __fsl_mc_device_remove+0xc/0x20 device_for_each_child+0x58/0xa0 dprc_remove+0x90/0xb0 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_bus_remove+0x80/0x100 fsl_mc_bus_shutdown+0xc/0x1c platform_shutdown+0x20/0x30 device_shutdown+0x154/0x330 __do_sys_reboot+0x1cc/0x250 __arm64_sys_reboot+0x20/0x30 invoke_syscall.constprop.0+0x4c/0xe0 do_el0_svc+0x4c/0x150 el0_svc+0x24/0xb0 el0t_64_sync_handler+0xa8/0xb0 el0t_64_sync+0x178/0x17c It can be seen from the stack trace that the problem is that the deregistration of the master causes a dev_close(), which gets notified as NETDEV_GOING_DOWN to dsa_slave_netdevice_event(). But dsa_switch_shutdown() has already run, and this has unregistered the DSA slave interfaces, and yet, the NETDEV_GOING_DOWN handler attempts to call dev_close_many() on those slave interfaces, leading to the problem. The previous attempt to avoid the NETDEV_GOING_DOWN on the master after dsa_switch_shutdown() was called seems improper. Unregistering the slave interfaces is unnecessary and unhelpful. Instead, after the slaves have stopped being uppers of the DSA master, we can now reset to NULL the master->dsa_ptr pointer, which will make DSA start ignoring all future notifier events on the master.
CVE-2022-48755 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc64/bpf: Limit 'ldbrx' to processors compliant with ISA v2.06 Johan reported the below crash with test_bpf on ppc64 e5500: test_bpf: #296 ALU_END_FROM_LE 64: 0x0123456789abcdef -> 0x67452301 jited:1 Oops: Exception in kernel mode, sig: 4 [#1] BE PAGE_SIZE=4K SMP NR_CPUS=24 QEMU e500 Modules linked in: test_bpf(+) CPU: 0 PID: 76 Comm: insmod Not tainted 5.14.0-03771-g98c2059e008a-dirty #1 NIP: 8000000000061c3c LR: 80000000006dea64 CTR: 8000000000061c18 REGS: c0000000032d3420 TRAP: 0700 Not tainted (5.14.0-03771-g98c2059e008a-dirty) MSR: 0000000080089000 <EE,ME> CR: 88002822 XER: 20000000 IRQMASK: 0 <...> NIP [8000000000061c3c] 0x8000000000061c3c LR [80000000006dea64] .__run_one+0x104/0x17c [test_bpf] Call Trace: .__run_one+0x60/0x17c [test_bpf] (unreliable) .test_bpf_init+0x6a8/0xdc8 [test_bpf] .do_one_initcall+0x6c/0x28c .do_init_module+0x68/0x28c .load_module+0x2460/0x2abc .__do_sys_init_module+0x120/0x18c .system_call_exception+0x110/0x1b8 system_call_common+0xf0/0x210 --- interrupt: c00 at 0x101d0acc <...> ---[ end trace 47b2bf19090bb3d0 ]--- Illegal instruction The illegal instruction turned out to be 'ldbrx' emitted for BPF_FROM_[L|B]E, which was only introduced in ISA v2.06. Guard use of the same and implement an alternative approach for older processors.