| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/khugepaged: fix ->anon_vma race
If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires
it to be locked.
Page table traversal is allowed under any one of the mmap lock, the
anon_vma lock (if the VMA is associated with an anon_vma), and the
mapping lock (if the VMA is associated with a mapping); and so to be
able to remove page tables, we must hold all three of them.
retract_page_tables() bails out if an ->anon_vma is attached, but does
this check before holding the mmap lock (as the comment above the check
explains).
If we racily merged an existing ->anon_vma (shared with a child
process) from a neighboring VMA, subsequent rmap traversals on pages
belonging to the child will be able to see the page tables that we are
concurrently removing while assuming that nothing else can access them.
Repeat the ->anon_vma check once we hold the mmap lock to ensure that
there really is no concurrent page table access.
Hitting this bug causes a lockdep warning in collapse_and_free_pmd(),
in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)".
It can also lead to use-after-free access. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix UAF in cifs_demultiplex_thread()
There is a UAF when xfstests on cifs:
BUG: KASAN: use-after-free in smb2_is_network_name_deleted+0x27/0x160
Read of size 4 at addr ffff88810103fc08 by task cifsd/923
CPU: 1 PID: 923 Comm: cifsd Not tainted 6.1.0-rc4+ #45
...
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
kasan_check_range+0x145/0x1a0
smb2_is_network_name_deleted+0x27/0x160
cifs_demultiplex_thread.cold+0x172/0x5a4
kthread+0x165/0x1a0
ret_from_fork+0x1f/0x30
</TASK>
Allocated by task 923:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_slab_alloc+0x54/0x60
kmem_cache_alloc+0x147/0x320
mempool_alloc+0xe1/0x260
cifs_small_buf_get+0x24/0x60
allocate_buffers+0xa1/0x1c0
cifs_demultiplex_thread+0x199/0x10d0
kthread+0x165/0x1a0
ret_from_fork+0x1f/0x30
Freed by task 921:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x143/0x1b0
kmem_cache_free+0xe3/0x4d0
cifs_small_buf_release+0x29/0x90
SMB2_negotiate+0x8b7/0x1c60
smb2_negotiate+0x51/0x70
cifs_negotiate_protocol+0xf0/0x160
cifs_get_smb_ses+0x5fa/0x13c0
mount_get_conns+0x7a/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The UAF is because:
mount(pid: 921) | cifsd(pid: 923)
-------------------------------|-------------------------------
| cifs_demultiplex_thread
SMB2_negotiate |
cifs_send_recv |
compound_send_recv |
smb_send_rqst |
wait_for_response |
wait_event_state [1] |
| standard_receive3
| cifs_handle_standard
| handle_mid
| mid->resp_buf = buf; [2]
| dequeue_mid [3]
KILL the process [4] |
resp_iov[i].iov_base = buf |
free_rsp_buf [5] |
| is_network_name_deleted [6]
| callback
1. After send request to server, wait the response until
mid->mid_state != SUBMITTED;
2. Receive response from server, and set it to mid;
3. Set the mid state to RECEIVED;
4. Kill the process, the mid state already RECEIVED, get 0;
5. Handle and release the negotiate response;
6. UAF.
It can be easily reproduce with add some delay in [3] - [6].
Only sync call has the problem since async call's callback is
executed in cifsd process.
Add an extra state to mark the mid state to READY before wakeup the
waitter, then it can get the resp safely. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/meson: remove drm bridges at aggregate driver unbind time
drm bridges added by meson_encoder_hdmi_init and meson_encoder_cvbs_init
were not manually removed at module unload time, which caused dangling
references to freed memory to remain linked in the global bridge_list.
When loading the driver modules back in, the same functions would again
call drm_bridge_add, and when traversing the global bridge_list, would
end up peeking into freed memory.
Once again KASAN revealed the problem:
[ +0.000095] =============================================================
[ +0.000008] BUG: KASAN: use-after-free in __list_add_valid+0x9c/0x120
[ +0.000018] Read of size 8 at addr ffff00003da291f0 by task modprobe/2483
[ +0.000018] CPU: 3 PID: 2483 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1
[ +0.000011] Hardware name: Hardkernel ODROID-N2Plus (DT)
[ +0.000008] Call trace:
[ +0.000006] dump_backtrace+0x1ec/0x280
[ +0.000012] show_stack+0x24/0x80
[ +0.000008] dump_stack_lvl+0x98/0xd4
[ +0.000011] print_address_description.constprop.0+0x80/0x520
[ +0.000011] print_report+0x128/0x260
[ +0.000008] kasan_report+0xb8/0xfc
[ +0.000008] __asan_report_load8_noabort+0x3c/0x50
[ +0.000009] __list_add_valid+0x9c/0x120
[ +0.000009] drm_bridge_add+0x6c/0x104 [drm]
[ +0.000165] dw_hdmi_probe+0x1900/0x2360 [dw_hdmi]
[ +0.000022] meson_dw_hdmi_bind+0x520/0x814 [meson_dw_hdmi]
[ +0.000014] component_bind+0x174/0x520
[ +0.000012] component_bind_all+0x1a8/0x38c
[ +0.000010] meson_drv_bind_master+0x5e8/0xb74 [meson_drm]
[ +0.000032] meson_drv_bind+0x20/0x2c [meson_drm]
[ +0.000027] try_to_bring_up_aggregate_device+0x19c/0x390
[ +0.000010] component_master_add_with_match+0x1c8/0x284
[ +0.000009] meson_drv_probe+0x274/0x280 [meson_drm]
[ +0.000026] platform_probe+0xd0/0x220
[ +0.000009] really_probe+0x3ac/0xa80
[ +0.000009] __driver_probe_device+0x1f8/0x400
[ +0.000009] driver_probe_device+0x68/0x1b0
[ +0.000009] __driver_attach+0x20c/0x480
[ +0.000008] bus_for_each_dev+0x114/0x1b0
[ +0.000009] driver_attach+0x48/0x64
[ +0.000008] bus_add_driver+0x390/0x564
[ +0.000009] driver_register+0x1a8/0x3e4
[ +0.000009] __platform_driver_register+0x6c/0x94
[ +0.000008] meson_drm_platform_driver_init+0x3c/0x1000 [meson_drm]
[ +0.000027] do_one_initcall+0xc4/0x2b0
[ +0.000011] do_init_module+0x154/0x570
[ +0.000011] load_module+0x1a78/0x1ea4
[ +0.000008] __do_sys_init_module+0x184/0x1cc
[ +0.000009] __arm64_sys_init_module+0x78/0xb0
[ +0.000009] invoke_syscall+0x74/0x260
[ +0.000009] el0_svc_common.constprop.0+0xcc/0x260
[ +0.000008] do_el0_svc+0x50/0x70
[ +0.000007] el0_svc+0x68/0x1a0
[ +0.000012] el0t_64_sync_handler+0x11c/0x150
[ +0.000008] el0t_64_sync+0x18c/0x190
[ +0.000016] Allocated by task 879:
[ +0.000008] kasan_save_stack+0x2c/0x5c
[ +0.000011] __kasan_kmalloc+0x90/0xd0
[ +0.000007] __kmalloc+0x278/0x4a0
[ +0.000011] mpi_resize+0x13c/0x1d0
[ +0.000011] mpi_powm+0xd24/0x1570
[ +0.000009] rsa_enc+0x1a4/0x30c
[ +0.000009] pkcs1pad_verify+0x3f0/0x580
[ +0.000009] public_key_verify_signature+0x7a8/0xba4
[ +0.000010] public_key_verify_signature_2+0x40/0x60
[ +0.000008] verify_signature+0xb4/0x114
[ +0.000008] pkcs7_validate_trust_one.constprop.0+0x3b8/0x574
[ +0.000009] pkcs7_validate_trust+0xb8/0x15c
[ +0.000008] verify_pkcs7_message_sig+0xec/0x1b0
[ +0.000012] verify_pkcs7_signature+0x78/0xac
[ +0.000007] mod_verify_sig+0x110/0x190
[ +0.000009] module_sig_check+0x114/0x1e0
[ +0.000009] load_module+0xa0/0x1ea4
[ +0.000008] __do_sys_init_module+0x184/0x1cc
[ +0.000008] __arm64_sys_init_module+0x78/0xb0
[ +0.000008] invoke_syscall+0x74/0x260
[ +0.000009] el0_svc_common.constprop.0+0x1a8/0x260
[ +0.000008] do_el0_svc+0x50/0x70
[ +0.000007] el0_svc+0x68/0x1a0
[ +0.000009] el0t_64_sync_handler+0x11c/0x150
[ +0.000009] el0t_64
---truncated--- |
| Use after free in Storage in Google Chrome prior to 141.0.7390.65 allowed a remote attacker to execute arbitrary code via a crafted video file. (Chromium security severity: High) |
| Use after free in Safe Browsing in Google Chrome prior to 141.0.7390.107 allowed a remote attacker who had compromised the renderer process to potentially perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High) |
| Use-after-free in the WebRTC: Audio/Video component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: Fix use after free for wext
Key information in wext.connect is not reset on (re)connect and can hold
data from a previous connection.
Reset key data to avoid that drivers or mac80211 incorrectly detect a
WEP connection request and access the freed or already reused memory.
Additionally optimize cfg80211_sme_connect() and avoid an useless
schedule of conn_work. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: handle the error returned from sctp_auth_asoc_init_active_key
When it returns an error from sctp_auth_asoc_init_active_key(), the
active_key is actually not updated. The old sh_key will be freeed
while it's still used as active key in asoc. Then an use-after-free
will be triggered when sending patckets, as found by syzbot:
sctp_auth_shkey_hold+0x22/0xa0 net/sctp/auth.c:112
sctp_set_owner_w net/sctp/socket.c:132 [inline]
sctp_sendmsg_to_asoc+0xbd5/0x1a20 net/sctp/socket.c:1863
sctp_sendmsg+0x1053/0x1d50 net/sctp/socket.c:2025
inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:734
This patch is to fix it by not replacing the sh_key when it returns
errors from sctp_auth_asoc_init_active_key() in sctp_auth_set_key().
For sctp_auth_set_active_key(), old active_key_id will be set back
to asoc->active_key_id when the same thing happens. |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix possible UAF when kfifo_alloc() fails
If kfifo_alloc() fails in mport_cdev_open(), goto err_fifo and just free
priv. But priv is still in the chdev->file_list, then list traversal
may cause UAF. This fixes the following smatch warning:
drivers/rapidio/devices/rio_mport_cdev.c:1930 mport_cdev_open() warn: '&priv->list' not removed from list |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Make dma-fences compliant with the safe access rules
Xe can free some of the data pointed to by the dma-fences it exports. Most
notably the timeline name can get freed if userspace closes the associated
submit queue. At the same time the fence could have been exported to a
third party (for example a sync_fence fd) which will then cause an use-
after-free on subsequent access.
To make this safe we need to make the driver compliant with the newly
documented dma-fence rules. Driver has to ensure a RCU grace period
between signalling a fence and freeing any data pointed to by said fence.
For the timeline name we simply make the queue be freed via kfree_rcu and
for the shared lock associated with multiple queues we add a RCU grace
period before freeing the per GT structure holding the lock. |
| In the Linux kernel, the following vulnerability has been resolved:
android: binder: stop saving a pointer to the VMA
Do not record a pointer to a VMA outside of the mmap_lock for later use.
This is unsafe and there are a number of failure paths *after* the
recorded VMA pointer may be freed during setup. There is no callback to
the driver to clear the saved pointer from generic mm code. Furthermore,
the VMA pointer may become stale if any number of VMA operations end up
freeing the VMA so saving it was fragile to being with.
Instead, change the binder_alloc struct to record the start address of the
VMA and use vma_lookup() to get the vma when needed. Add lockdep
mmap_lock checks on updates to the vma pointer to ensure the lock is held
and depend on that lock for synchronization of readers and writers - which
was already the case anyways, so the smp_wmb()/smp_rmb() was not
necessary.
[akpm@linux-foundation.org: fix drivers/android/binder_alloc_selftest.c] |
| Use-after-free vulnerability in Adobe Reader and Acrobat 10.x before 10.1.9 and 11.x before 11.0.06 on Windows and Mac OS X allows attackers to execute arbitrary code via unspecified vectors. |
| A vulnerability was found in libssh, where an uninitialized variable exists under certain conditions in the privatekey_from_file() function. This flaw can be triggered if the file specified by the filename doesn't exist and may lead to possible signing failures or heap corruption. |
| A heap use-after-free issue has been identified in SQLite in the jsonParseAddNodeArray() function in sqlite3.c. This flaw allows a local attacker to leverage a victim to pass specially crafted malicious input to the application, potentially causing a crash and leading to a denial of service. |
| A use-after-free flaw was found in PackageKitd. In some conditions, the order of cleanup mechanics for a transaction could be impacted. As a result, some memory access could occur on memory regions that were previously freed. Once freed, a memory region can be reused for other allocations and any previously stored data in this memory region is considered lost. |
| In the Linux kernel, the following vulnerability has been resolved:
ath9k: fix use-after-free in ath9k_hif_usb_rx_cb
Syzbot reported use-after-free Read in ath9k_hif_usb_rx_cb() [0]. The
problem was in incorrect htc_handle->drv_priv initialization.
Probable call trace which can trigger use-after-free:
ath9k_htc_probe_device()
/* htc_handle->drv_priv = priv; */
ath9k_htc_wait_for_target() <--- Failed
ieee80211_free_hw() <--- priv pointer is freed
<IRQ>
...
ath9k_hif_usb_rx_cb()
ath9k_hif_usb_rx_stream()
RX_STAT_INC() <--- htc_handle->drv_priv access
In order to not add fancy protection for drv_priv we can move
htc_handle->drv_priv initialization at the end of the
ath9k_htc_probe_device() and add helper macro to make
all *_STAT_* macros NULL safe, since syzbot has reported related NULL
deref in that macros [1] |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix use-after-free of sq->thread in __io_uring_show_fdinfo()
syzbot reports:
BUG: KASAN: slab-use-after-free in getrusage+0x1109/0x1a60
Read of size 8 at addr ffff88810de2d2c8 by task a.out/304
CPU: 0 UID: 0 PID: 304 Comm: a.out Not tainted 6.16.0-rc1 #1 PREEMPT(voluntary)
Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
print_report+0xd0/0x670
? __pfx__raw_spin_lock_irqsave+0x10/0x10
? getrusage+0x1109/0x1a60
kasan_report+0xce/0x100
? getrusage+0x1109/0x1a60
getrusage+0x1109/0x1a60
? __pfx_getrusage+0x10/0x10
__io_uring_show_fdinfo+0x9fe/0x1790
? ksys_read+0xf7/0x1c0
? do_syscall_64+0xa4/0x260
? vsnprintf+0x591/0x1100
? __pfx___io_uring_show_fdinfo+0x10/0x10
? __pfx_vsnprintf+0x10/0x10
? mutex_trylock+0xcf/0x130
? __pfx_mutex_trylock+0x10/0x10
? __pfx_show_fd_locks+0x10/0x10
? io_uring_show_fdinfo+0x57/0x80
io_uring_show_fdinfo+0x57/0x80
seq_show+0x38c/0x690
seq_read_iter+0x3f7/0x1180
? inode_set_ctime_current+0x160/0x4b0
seq_read+0x271/0x3e0
? __pfx_seq_read+0x10/0x10
? __pfx__raw_spin_lock+0x10/0x10
? __mark_inode_dirty+0x402/0x810
? selinux_file_permission+0x368/0x500
? file_update_time+0x10f/0x160
vfs_read+0x177/0xa40
? __pfx___handle_mm_fault+0x10/0x10
? __pfx_vfs_read+0x10/0x10
? mutex_lock+0x81/0xe0
? __pfx_mutex_lock+0x10/0x10
? fdget_pos+0x24d/0x4b0
ksys_read+0xf7/0x1c0
? __pfx_ksys_read+0x10/0x10
? do_user_addr_fault+0x43b/0x9c0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f0f74170fc9
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 8
RSP: 002b:00007fffece049e8 EFLAGS: 00000206 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f0f74170fc9
RDX: 0000000000001000 RSI: 00007fffece049f0 RDI: 0000000000000004
RBP: 00007fffece05ad0 R08: 0000000000000000 R09: 00007fffece04d90
R10: 0000000000000000 R11: 0000000000000206 R12: 00005651720a1100
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 298:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_slab_alloc+0x6e/0x70
kmem_cache_alloc_node_noprof+0xe8/0x330
copy_process+0x376/0x5e00
create_io_thread+0xab/0xf0
io_sq_offload_create+0x9ed/0xf20
io_uring_setup+0x12b0/0x1cc0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 22:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x37/0x50
kmem_cache_free+0xc4/0x360
rcu_core+0x5ff/0x19f0
handle_softirqs+0x18c/0x530
run_ksoftirqd+0x20/0x30
smpboot_thread_fn+0x287/0x6c0
kthread+0x30d/0x630
ret_from_fork+0xef/0x1a0
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x33/0x60
kasan_record_aux_stack+0x8c/0xa0
__call_rcu_common.constprop.0+0x68/0x940
__schedule+0xff2/0x2930
__cond_resched+0x4c/0x80
mutex_lock+0x5c/0xe0
io_uring_del_tctx_node+0xe1/0x2b0
io_uring_clean_tctx+0xb7/0x160
io_uring_cancel_generic+0x34e/0x760
do_exit+0x240/0x2350
do_group_exit+0xab/0x220
__x64_sys_exit_group+0x39/0x40
x64_sys_call+0x1243/0x1840
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The buggy address belongs to the object at ffff88810de2cb00
which belongs to the cache task_struct of size 3712
The buggy address is located 1992 bytes inside of
freed 3712-byte region [ffff88810de2cb00, ffff88810de2d980)
which is caused by the task_struct pointed to by sq->thread being
released while it is being used in the function
__io_uring_show_fdinfo(). Holding ctx->uring_lock does not prevent ehre
relase or exit of sq->thread.
Fix this by assigning and looking up ->thread under RCU, and grabbing a
reference to the task_struct. This e
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix ECVF vports unload on shutdown flow
Fix shutdown flow UAF when a virtual function is created on the embedded
chip (ECVF) of a BlueField device. In such case the vport acl ingress
table is not properly destroyed.
ECVF functionality is independent of ecpf_vport_exists capability and
thus functions mlx5_eswitch_(enable|disable)_pf_vf_vports() should not
test it when enabling/disabling ECVF vports.
kernel log:
[] refcount_t: underflow; use-after-free.
[] WARNING: CPU: 3 PID: 1 at lib/refcount.c:28
refcount_warn_saturate+0x124/0x220
----------------
[] Call trace:
[] refcount_warn_saturate+0x124/0x220
[] tree_put_node+0x164/0x1e0 [mlx5_core]
[] mlx5_destroy_flow_table+0x98/0x2c0 [mlx5_core]
[] esw_acl_ingress_table_destroy+0x28/0x40 [mlx5_core]
[] esw_acl_ingress_lgcy_cleanup+0x80/0xf4 [mlx5_core]
[] esw_legacy_vport_acl_cleanup+0x44/0x60 [mlx5_core]
[] esw_vport_cleanup+0x64/0x90 [mlx5_core]
[] mlx5_esw_vport_disable+0xc0/0x1d0 [mlx5_core]
[] mlx5_eswitch_unload_ec_vf_vports+0xcc/0x150 [mlx5_core]
[] mlx5_eswitch_disable_sriov+0x198/0x2a0 [mlx5_core]
[] mlx5_device_disable_sriov+0xb8/0x1e0 [mlx5_core]
[] mlx5_sriov_detach+0x40/0x50 [mlx5_core]
[] mlx5_unload+0x40/0xc4 [mlx5_core]
[] mlx5_unload_one_devl_locked+0x6c/0xe4 [mlx5_core]
[] mlx5_unload_one+0x3c/0x60 [mlx5_core]
[] shutdown+0x7c/0xa4 [mlx5_core]
[] pci_device_shutdown+0x3c/0xa0
[] device_shutdown+0x170/0x340
[] __do_sys_reboot+0x1f4/0x2a0
[] __arm64_sys_reboot+0x2c/0x40
[] invoke_syscall+0x78/0x100
[] el0_svc_common.constprop.0+0x54/0x184
[] do_el0_svc+0x30/0xac
[] el0_svc+0x48/0x160
[] el0t_64_sync_handler+0xa4/0x12c
[] el0t_64_sync+0x1a4/0x1a8
[] --[ end trace 9c4601d68c70030e ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix uaf in ath12k_core_init()
When the execution of ath12k_core_hw_group_assign() or
ath12k_core_hw_group_create() fails, the registered notifier chain is not
unregistered properly. Its memory is freed after rmmod, which may trigger
to a use-after-free (UAF) issue if there is a subsequent access to this
notifier chain.
Fixes the issue by calling ath12k_core_panic_notifier_unregister() in
failure cases.
Call trace:
notifier_chain_register+0x4c/0x1f0 (P)
atomic_notifier_chain_register+0x38/0x68
ath12k_core_init+0x50/0x4e8 [ath12k]
ath12k_pci_probe+0x5f8/0xc28 [ath12k]
pci_device_probe+0xbc/0x1a8
really_probe+0xc8/0x3a0
__driver_probe_device+0x84/0x1b0
driver_probe_device+0x44/0x130
__driver_attach+0xcc/0x208
bus_for_each_dev+0x84/0x100
driver_attach+0x2c/0x40
bus_add_driver+0x130/0x260
driver_register+0x70/0x138
__pci_register_driver+0x68/0x80
ath12k_pci_init+0x30/0x68 [ath12k]
ath12k_init+0x28/0x78 [ath12k]
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Protect mgmt_pending list with its own lock
This uses a mutex to protect from concurrent access of mgmt_pending
list which can cause crashes like:
==================================================================
BUG: KASAN: slab-use-after-free in hci_sock_get_channel+0x60/0x68 net/bluetooth/hci_sock.c:91
Read of size 2 at addr ffff0000c48885b2 by task syz.4.334/7318
CPU: 0 UID: 0 PID: 7318 Comm: syz.4.334 Not tainted 6.15.0-rc7-syzkaller-g187899f4124a #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
Call trace:
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:466 (C)
__dump_stack+0x30/0x40 lib/dump_stack.c:94
dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120
print_address_description+0xa8/0x254 mm/kasan/report.c:408
print_report+0x68/0x84 mm/kasan/report.c:521
kasan_report+0xb0/0x110 mm/kasan/report.c:634
__asan_report_load2_noabort+0x20/0x2c mm/kasan/report_generic.c:379
hci_sock_get_channel+0x60/0x68 net/bluetooth/hci_sock.c:91
mgmt_pending_find+0x7c/0x140 net/bluetooth/mgmt_util.c:223
pending_find net/bluetooth/mgmt.c:947 [inline]
remove_adv_monitor+0x44/0x1a4 net/bluetooth/mgmt.c:5445
hci_mgmt_cmd+0x780/0xc00 net/bluetooth/hci_sock.c:1712
hci_sock_sendmsg+0x544/0xbb0 net/bluetooth/hci_sock.c:1832
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg net/socket.c:727 [inline]
sock_write_iter+0x25c/0x378 net/socket.c:1131
new_sync_write fs/read_write.c:591 [inline]
vfs_write+0x62c/0x97c fs/read_write.c:684
ksys_write+0x120/0x210 fs/read_write.c:736
__do_sys_write fs/read_write.c:747 [inline]
__se_sys_write fs/read_write.c:744 [inline]
__arm64_sys_write+0x7c/0x90 fs/read_write.c:744
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
Allocated by task 7037:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x40/0x78 mm/kasan/common.c:68
kasan_save_alloc_info+0x44/0x54 mm/kasan/generic.c:562
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x9c/0xb4 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4327 [inline]
__kmalloc_noprof+0x2fc/0x4c8 mm/slub.c:4339
kmalloc_noprof include/linux/slab.h:909 [inline]
sk_prot_alloc+0xc4/0x1f0 net/core/sock.c:2198
sk_alloc+0x44/0x3ac net/core/sock.c:2254
bt_sock_alloc+0x4c/0x300 net/bluetooth/af_bluetooth.c:148
hci_sock_create+0xa8/0x194 net/bluetooth/hci_sock.c:2202
bt_sock_create+0x14c/0x24c net/bluetooth/af_bluetooth.c:132
__sock_create+0x43c/0x91c net/socket.c:1541
sock_create net/socket.c:1599 [inline]
__sys_socket_create net/socket.c:1636 [inline]
__sys_socket+0xd4/0x1c0 net/socket.c:1683
__do_sys_socket net/socket.c:1697 [inline]
__se_sys_socket net/socket.c:1695 [inline]
__arm64_sys_socket+0x7c/0x94 net/socket.c:1695
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
Freed by task 6607:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x40/0x78 mm/kasan/common.c:68
kasan_save_free_info+0x58/0x70 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x68/0x88 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline
---truncated--- |