| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: unregister xdp rxq info in the reset path
vmxnet3 does not unregister xdp rxq info in the
vmxnet3_reset_work() code path as vmxnet3_rq_destroy()
is not invoked in this code path. So, we get below message with a
backtrace.
Missing unregister, handled but fix driver
WARNING: CPU:48 PID: 500 at net/core/xdp.c:182
__xdp_rxq_info_reg+0x93/0xf0
This patch fixes the problem by moving the unregister
code of XDP from vmxnet3_rq_destroy() to vmxnet3_rq_cleanup(). |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Mask the bd_cnt field in the TX BD properly
The bd_cnt field in the TX BD specifies the total number of BDs for
the TX packet. The bd_cnt field has 5 bits and the maximum number
supported is 32 with the value 0.
CONFIG_MAX_SKB_FRAGS can be modified and the total number of SKB
fragments can approach or exceed the maximum supported by the chip.
Add a macro to properly mask the bd_cnt field so that the value 32
will be properly masked and set to 0 in the bd_cnd field.
Without this patch, the out-of-range bd_cnt value will corrupt the
TX BD and may cause TX timeout.
The next patch will check for values exceeding 32. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: Remove broken autobind
Binding AX25 socket by using the autobind feature leads to memory leaks
in ax25_connect() and also refcount leaks in ax25_release(). Memory
leak was detected with kmemleak:
================================================================
unreferenced object 0xffff8880253cd680 (size 96):
backtrace:
__kmalloc_node_track_caller_noprof (./include/linux/kmemleak.h:43)
kmemdup_noprof (mm/util.c:136)
ax25_rt_autobind (net/ax25/ax25_route.c:428)
ax25_connect (net/ax25/af_ax25.c:1282)
__sys_connect_file (net/socket.c:2045)
__sys_connect (net/socket.c:2064)
__x64_sys_connect (net/socket.c:2067)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
================================================================
When socket is bound, refcounts must be incremented the way it is done
in ax25_bind() and ax25_setsockopt() (SO_BINDTODEVICE). In case of
autobind, the refcounts are not incremented.
This bug leads to the following issue reported by Syzkaller:
================================================================
ax25_connect(): syz-executor318 uses autobind, please contact jreuter@yaina.de
------------[ cut here ]------------
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 0 PID: 5317 at lib/refcount.c:31 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:31
Modules linked in:
CPU: 0 UID: 0 PID: 5317 Comm: syz-executor318 Not tainted 6.14.0-rc4-syzkaller-00278-gece144f151ac #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:31
...
Call Trace:
<TASK>
__refcount_dec include/linux/refcount.h:336 [inline]
refcount_dec include/linux/refcount.h:351 [inline]
ref_tracker_free+0x6af/0x7e0 lib/ref_tracker.c:236
netdev_tracker_free include/linux/netdevice.h:4302 [inline]
netdev_put include/linux/netdevice.h:4319 [inline]
ax25_release+0x368/0x960 net/ax25/af_ax25.c:1080
__sock_release net/socket.c:647 [inline]
sock_close+0xbc/0x240 net/socket.c:1398
__fput+0x3e9/0x9f0 fs/file_table.c:464
__do_sys_close fs/open.c:1580 [inline]
__se_sys_close fs/open.c:1565 [inline]
__x64_sys_close+0x7f/0x110 fs/open.c:1565
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
</TASK>
================================================================
Considering the issues above and the comments left in the code that say:
"check if we can remove this feature. It is broken."; "autobinding in this
may or may not work"; - it is better to completely remove this feature than
to fix it because it is broken and leads to various kinds of memory bugs.
Now calling connect() without first binding socket will result in an
error (-EINVAL). Userspace software that relies on the autobind feature
might get broken. However, this feature does not seem widely used with
this specific driver as it was not reliable at any point of time, and it
is already broken anyway. E.g. ax25-tools and ax25-apps packages for
popular distributions do not use the autobind feature for AF_AX25.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_queue: Initialize ctx to avoid memory allocation error
It is possible that ctx in nfqnl_build_packet_message() could be used
before it is properly initialize, which is only initialized
by nfqnl_get_sk_secctx().
This patch corrects this problem by initializing the lsmctx to a safe
value when it is declared.
This is similar to the commit 35fcac7a7c25
("audit: Initialize lsmctx to avoid memory allocation error"). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid journaling sb update on error if journal is destroying
Presently we always BUG_ON if trying to start a transaction on a journal marked
with JBD2_UNMOUNT, since this should never happen. However, while ltp running
stress tests, it was observed that in case of some error handling paths, it is
possible for update_super_work to start a transaction after the journal is
destroyed eg:
(umount)
ext4_kill_sb
kill_block_super
generic_shutdown_super
sync_filesystem /* commits all txns */
evict_inodes
/* might start a new txn */
ext4_put_super
flush_work(&sbi->s_sb_upd_work) /* flush the workqueue */
jbd2_journal_destroy
journal_kill_thread
journal->j_flags |= JBD2_UNMOUNT;
jbd2_journal_commit_transaction
jbd2_journal_get_descriptor_buffer
jbd2_journal_bmap
ext4_journal_bmap
ext4_map_blocks
...
ext4_inode_error
ext4_handle_error
schedule_work(&sbi->s_sb_upd_work)
/* work queue kicks in */
update_super_work
jbd2_journal_start
start_this_handle
BUG_ON(journal->j_flags &
JBD2_UNMOUNT)
Hence, introduce a new mount flag to indicate journal is destroying and only do
a journaled (and deferred) update of sb if this flag is not set. Otherwise, just
fallback to an un-journaled commit.
Further, in the journal destroy path, we have the following sequence:
1. Set mount flag indicating journal is destroying
2. force a commit and wait for it
3. flush pending sb updates
This sequence is important as it ensures that, after this point, there is no sb
update that might be journaled so it is safe to update the sb outside the
journal. (To avoid race discussed in 2d01ddc86606)
Also, we don't need a similar check in ext4_grp_locked_error since it is only
called from mballoc and AFAICT it would be always valid to schedule work here. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: fix out-of-range access of vnic_info array
The bnxt_queue_{start | stop}() access vnic_info as much as allocated,
which indicates bp->nr_vnics.
So, it should not reach bp->vnic_info[bp->nr_vnics]. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't clobber ret in btrfs_validate_super()
Commit 2a9bb78cfd36 ("btrfs: validate system chunk array at
btrfs_validate_super()") introduces a call to validate_sys_chunk_array()
in btrfs_validate_super(), which clobbers the value of ret set earlier.
This has the effect of negating the validity checks done earlier, making
it so btrfs could potentially try to mount invalid filesystems. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix block group refcount race in btrfs_create_pending_block_groups()
Block group creation is done in two phases, which results in a slightly
unintuitive property: a block group can be allocated/deallocated from
after btrfs_make_block_group() adds it to the space_info with
btrfs_add_bg_to_space_info(), but before creation is completely completed
in btrfs_create_pending_block_groups(). As a result, it is possible for a
block group to go unused and have 'btrfs_mark_bg_unused' called on it
concurrently with 'btrfs_create_pending_block_groups'. This causes a
number of issues, which were fixed with the block group flag
'BLOCK_GROUP_FLAG_NEW'.
However, this fix is not quite complete. Since it does not use the
unused_bg_lock, it is possible for the following race to occur:
btrfs_create_pending_block_groups btrfs_mark_bg_unused
if list_empty // false
list_del_init
clear_bit
else if (test_bit) // true
list_move_tail
And we get into the exact same broken ref count and invalid new_bgs
state for transaction cleanup that BLOCK_GROUP_FLAG_NEW was designed to
prevent.
The broken refcount aspect will result in a warning like:
[1272.943527] refcount_t: underflow; use-after-free.
[1272.943967] WARNING: CPU: 1 PID: 61 at lib/refcount.c:28 refcount_warn_saturate+0xba/0x110
[1272.944731] Modules linked in: btrfs virtio_net xor zstd_compress raid6_pq null_blk [last unloaded: btrfs]
[1272.945550] CPU: 1 UID: 0 PID: 61 Comm: kworker/u32:1 Kdump: loaded Tainted: G W 6.14.0-rc5+ #108
[1272.946368] Tainted: [W]=WARN
[1272.946585] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[1272.947273] Workqueue: btrfs_discard btrfs_discard_workfn [btrfs]
[1272.947788] RIP: 0010:refcount_warn_saturate+0xba/0x110
[1272.949532] RSP: 0018:ffffbf1200247df0 EFLAGS: 00010282
[1272.949901] RAX: 0000000000000000 RBX: ffffa14b00e3f800 RCX: 0000000000000000
[1272.950437] RDX: 0000000000000000 RSI: ffffbf1200247c78 RDI: 00000000ffffdfff
[1272.950986] RBP: ffffa14b00dc2860 R08: 00000000ffffdfff R09: ffffffff90526268
[1272.951512] R10: ffffffff904762c0 R11: 0000000063666572 R12: ffffa14b00dc28c0
[1272.952024] R13: 0000000000000000 R14: ffffa14b00dc2868 R15: 000001285dcd12c0
[1272.952850] FS: 0000000000000000(0000) GS:ffffa14d33c40000(0000) knlGS:0000000000000000
[1272.953458] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1272.953931] CR2: 00007f838cbda000 CR3: 000000010104e000 CR4: 00000000000006f0
[1272.954474] Call Trace:
[1272.954655] <TASK>
[1272.954812] ? refcount_warn_saturate+0xba/0x110
[1272.955173] ? __warn.cold+0x93/0xd7
[1272.955487] ? refcount_warn_saturate+0xba/0x110
[1272.955816] ? report_bug+0xe7/0x120
[1272.956103] ? handle_bug+0x53/0x90
[1272.956424] ? exc_invalid_op+0x13/0x60
[1272.956700] ? asm_exc_invalid_op+0x16/0x20
[1272.957011] ? refcount_warn_saturate+0xba/0x110
[1272.957399] btrfs_discard_cancel_work.cold+0x26/0x2b [btrfs]
[1272.957853] btrfs_put_block_group.cold+0x5d/0x8e [btrfs]
[1272.958289] btrfs_discard_workfn+0x194/0x380 [btrfs]
[1272.958729] process_one_work+0x130/0x290
[1272.959026] worker_thread+0x2ea/0x420
[1272.959335] ? __pfx_worker_thread+0x10/0x10
[1272.959644] kthread+0xd7/0x1c0
[1272.959872] ? __pfx_kthread+0x10/0x10
[1272.960172] ret_from_fork+0x30/0x50
[1272.960474] ? __pfx_kthread+0x10/0x10
[1272.960745] ret_from_fork_asm+0x1a/0x30
[1272.961035] </TASK>
[1272.961238] ---[ end trace 0000000000000000 ]---
Though we have seen them in the async discard workfn as well. It is
most likely to happen after a relocation finishes which cancels discard,
tears down the block group, etc.
Fix this fully by taking the lock arou
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: check error for register_netdev() on init
Current init logic ignores the error code from register_netdev(),
which will cause WARN_ON() on attempt to unregister it, if there was one,
and there is no info for the user that the creation of the netdev failed.
WARNING: CPU: 89 PID: 6902 at net/core/dev.c:11512 unregister_netdevice_many_notify+0x211/0x1a10
...
[ 3707.563641] unregister_netdev+0x1c/0x30
[ 3707.563656] idpf_vport_dealloc+0x5cf/0xce0 [idpf]
[ 3707.563684] idpf_deinit_task+0xef/0x160 [idpf]
[ 3707.563712] idpf_vc_core_deinit+0x84/0x320 [idpf]
[ 3707.563739] idpf_remove+0xbf/0x780 [idpf]
[ 3707.563769] pci_device_remove+0xab/0x1e0
[ 3707.563786] device_release_driver_internal+0x371/0x530
[ 3707.563803] driver_detach+0xbf/0x180
[ 3707.563816] bus_remove_driver+0x11b/0x2a0
[ 3707.563829] pci_unregister_driver+0x2a/0x250
Introduce an error check and log the vport number and error code.
On removal make sure to check VPORT_REG_NETDEV flag prior to calling
unregister and free on the netdev.
Add local variables for idx, vport_config and netdev for readability. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix using untrusted value of pkt_len in ice_vc_fdir_parse_raw()
Fix using the untrusted value of proto->raw.pkt_len in function
ice_vc_fdir_parse_raw() by verifying if it does not exceed the
VIRTCHNL_MAX_SIZE_RAW_PACKET value. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: validate queue quanta parameters to prevent OOB access
Add queue wraparound prevention in quanta configuration.
Ensure end_qid does not overflow by validating start_qid and num_queues. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: goto right label 'out_mmap_sem' in ext4_setattr()
Otherwise, if ext4_inode_attach_jinode() fails, a hung task will
happen because filemap_invalidate_unlock() isn't called to unlock
mapping->invalidate_lock. Like this:
EXT4-fs error (device sda) in ext4_setattr:5557: Out of memory
INFO: task fsstress:374 blocked for more than 122 seconds.
Not tainted 6.14.0-rc1-next-20250206-xfstests-dirty #726
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:fsstress state:D stack:0 pid:374 tgid:374 ppid:373
task_flags:0x440140 flags:0x00000000
Call Trace:
<TASK>
__schedule+0x2c9/0x7f0
schedule+0x27/0xa0
schedule_preempt_disabled+0x15/0x30
rwsem_down_read_slowpath+0x278/0x4c0
down_read+0x59/0xb0
page_cache_ra_unbounded+0x65/0x1b0
filemap_get_pages+0x124/0x3e0
filemap_read+0x114/0x3d0
vfs_read+0x297/0x360
ksys_read+0x6c/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix adding folio to bio
>4GB folio is possible on some ARCHs, such as aarch64, 16GB hugepage
is supported, then 'offset' of folio can't be held in 'unsigned int',
cause warning in bio_add_folio_nofail() and IO failure.
Fix it by adjusting 'page' & trimming 'offset' so that `->bi_offset` won't
be overflow, and folio can be added to bio successfully. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid accessing uninitialized curseg
syzbot reports a f2fs bug as below:
F2FS-fs (loop3): Stopped filesystem due to reason: 7
kworker/u8:7: attempt to access beyond end of device
BUG: unable to handle page fault for address: ffffed1604ea3dfa
RIP: 0010:get_ckpt_valid_blocks fs/f2fs/segment.h:361 [inline]
RIP: 0010:has_curseg_enough_space fs/f2fs/segment.h:570 [inline]
RIP: 0010:__get_secs_required fs/f2fs/segment.h:620 [inline]
RIP: 0010:has_not_enough_free_secs fs/f2fs/segment.h:633 [inline]
RIP: 0010:has_enough_free_secs+0x575/0x1660 fs/f2fs/segment.h:649
<TASK>
f2fs_is_checkpoint_ready fs/f2fs/segment.h:671 [inline]
f2fs_write_inode+0x425/0x540 fs/f2fs/inode.c:791
write_inode fs/fs-writeback.c:1525 [inline]
__writeback_single_inode+0x708/0x10d0 fs/fs-writeback.c:1745
writeback_sb_inodes+0x820/0x1360 fs/fs-writeback.c:1976
wb_writeback+0x413/0xb80 fs/fs-writeback.c:2156
wb_do_writeback fs/fs-writeback.c:2303 [inline]
wb_workfn+0x410/0x1080 fs/fs-writeback.c:2343
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317
worker_thread+0x870/0xd30 kernel/workqueue.c:3398
kthread+0x7a9/0x920 kernel/kthread.c:464
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Commit 8b10d3653735 ("f2fs: introduce FAULT_NO_SEGMENT") allows to trigger
no free segment fault in allocator, then it will update curseg->segno to
NULL_SEGNO, though, CP_ERROR_FLAG has been set, f2fs_write_inode() missed
to check the flag, and access invalid curseg->segno directly in below call
path, then resulting in panic:
- f2fs_write_inode
- f2fs_is_checkpoint_ready
- has_enough_free_secs
- has_not_enough_free_secs
- __get_secs_required
- has_curseg_enough_space
- get_ckpt_valid_blocks
: access invalid curseg->segno
To avoid this issue, let's:
- check CP_ERROR_FLAG flag in prior to f2fs_is_checkpoint_ready() in
f2fs_write_inode().
- in has_curseg_enough_space(), save curseg->segno into a temp variable,
and verify its validation before use. |
| In the Linux kernel, the following vulnerability has been resolved:
md/md-bitmap: fix wrong bitmap_limit for clustermd when write sb
In clustermd, separate write-intent-bitmaps are used for each cluster
node:
0 4k 8k 12k
-------------------------------------------------------------------
| idle | md super | bm super [0] + bits |
| bm bits[0, contd] | bm super[1] + bits | bm bits[1, contd] |
| bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
| bm bits [3, contd] | | |
So in node 1, pg_index in __write_sb_page() could equal to
bitmap->storage.file_pages. Then bitmap_limit will be calculated to
0. md_super_write() will be called with 0 size.
That means the first 4k sb area of node 1 will never be updated
through filemap_write_page().
This bug causes hang of mdadm/clustermd_tests/01r1_Grow_resize.
Here use (pg_index % bitmap->storage.file_pages) to make calculation
of bitmap_limit correct. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1,raid10: don't ignore IO flags
If blk-wbt is enabled by default, it's found that raid write performance
is quite bad because all IO are throttled by wbt of underlying disks,
due to flag REQ_IDLE is ignored. And turns out this behaviour exist since
blk-wbt is introduced.
Other than REQ_IDLE, other flags should not be ignored as well, for
example REQ_META can be set for filesystems, clearing it can cause priority
reverse problems; And REQ_NOWAIT should not be cleared as well, because
io will wait instead of failing directly in underlying disks.
Fix those problems by keep IO flags from master bio.
Fises: f51d46d0e7cb ("md: add support for REQ_NOWAIT") |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix potential deadloop in prepare_compress_overwrite()
Jan Prusakowski reported a kernel hang issue as below:
When running xfstests on linux-next kernel (6.14.0-rc3, 6.12) I
encountered a problem in generic/475 test where fsstress process
gets blocked in __f2fs_write_data_pages() and the test hangs.
The options I used are:
MKFS_OPTIONS -- -O compression -O extra_attr -O project_quota -O quota /dev/vdc
MOUNT_OPTIONS -- -o acl,user_xattr -o discard,compress_extension=* /dev/vdc /vdc
INFO: task kworker/u8:0:11 blocked for more than 122 seconds.
Not tainted 6.14.0-rc3-xfstests-lockdep #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u8:0 state:D stack:0 pid:11 tgid:11 ppid:2 task_flags:0x4208160 flags:0x00004000
Workqueue: writeback wb_workfn (flush-253:0)
Call Trace:
<TASK>
__schedule+0x309/0x8e0
schedule+0x3a/0x100
schedule_preempt_disabled+0x15/0x30
__mutex_lock+0x59a/0xdb0
__f2fs_write_data_pages+0x3ac/0x400
do_writepages+0xe8/0x290
__writeback_single_inode+0x5c/0x360
writeback_sb_inodes+0x22f/0x570
wb_writeback+0xb0/0x410
wb_do_writeback+0x47/0x2f0
wb_workfn+0x5a/0x1c0
process_one_work+0x223/0x5b0
worker_thread+0x1d5/0x3c0
kthread+0xfd/0x230
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1a/0x30
</TASK>
The root cause is: once generic/475 starts toload error table to dm
device, f2fs_prepare_compress_overwrite() will loop reading compressed
cluster pages due to IO error, meanwhile it has held .writepages lock,
it can block all other writeback tasks.
Let's fix this issue w/ below changes:
- add f2fs_handle_page_eio() in prepare_compress_overwrite() to
detect IO error.
- detect cp_error earler in f2fs_read_multi_pages(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Clear affinity hint before calling ath12k_pci_free_irq() in error path
If a shared IRQ is used by the driver due to platform limitation, then the
IRQ affinity hint is set right after the allocation of IRQ vectors in
ath12k_pci_msi_alloc(). This does no harm unless one of the functions
requesting the IRQ fails and attempt to free the IRQ.
This may end up with a warning from the IRQ core that is expecting the
affinity hint to be cleared before freeing the IRQ:
kernel/irq/manage.c:
/* make sure affinity_hint is cleaned up */
if (WARN_ON_ONCE(desc->affinity_hint))
desc->affinity_hint = NULL;
So to fix this issue, clear the IRQ affinity hint before calling
ath12k_pci_free_irq() in the error path. The affinity will be cleared once
again further down the error path due to code organization, but that does
no harm. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: reject on-disk inodes of an unsupported type
Syzbot has reported the following BUG:
kernel BUG at fs/inode.c:668!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 UID: 0 PID: 139 Comm: jfsCommit Not tainted 6.12.0-rc4-syzkaller-00085-g4e46774408d9 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
RIP: 0010:clear_inode+0x168/0x190
Code: 4c 89 f7 e8 ba fe e5 ff e9 61 ff ff ff 44 89 f1 80 e1 07 80 c1 03 38 c1 7c c1 4c 89 f7 e8 90 ff e5 ff eb b7
0b e8 01 5d 7f ff 90 0f 0b e8 f9 5c 7f ff 90 0f 0b e8 f1 5c 7f
RSP: 0018:ffffc900027dfae8 EFLAGS: 00010093
RAX: ffffffff82157a87 RBX: 0000000000000001 RCX: ffff888104d4b980
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffffc900027dfc90 R08: ffffffff82157977 R09: fffff520004fbf38
R10: dffffc0000000000 R11: fffff520004fbf38 R12: dffffc0000000000
R13: ffff88811315bc00 R14: ffff88811315bda8 R15: ffff88811315bb80
FS: 0000000000000000(0000) GS:ffff888135f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005565222e0578 CR3: 0000000026ef0000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __die_body+0x5f/0xb0
? die+0x9e/0xc0
? do_trap+0x15a/0x3a0
? clear_inode+0x168/0x190
? do_error_trap+0x1dc/0x2c0
? clear_inode+0x168/0x190
? __pfx_do_error_trap+0x10/0x10
? report_bug+0x3cd/0x500
? handle_invalid_op+0x34/0x40
? clear_inode+0x168/0x190
? exc_invalid_op+0x38/0x50
? asm_exc_invalid_op+0x1a/0x20
? clear_inode+0x57/0x190
? clear_inode+0x167/0x190
? clear_inode+0x168/0x190
? clear_inode+0x167/0x190
jfs_evict_inode+0xb5/0x440
? __pfx_jfs_evict_inode+0x10/0x10
evict+0x4ea/0x9b0
? __pfx_evict+0x10/0x10
? iput+0x713/0xa50
txUpdateMap+0x931/0xb10
? __pfx_txUpdateMap+0x10/0x10
jfs_lazycommit+0x49a/0xb80
? _raw_spin_unlock_irqrestore+0x8f/0x140
? lockdep_hardirqs_on+0x99/0x150
? __pfx_jfs_lazycommit+0x10/0x10
? __pfx_default_wake_function+0x10/0x10
? __kthread_parkme+0x169/0x1d0
? __pfx_jfs_lazycommit+0x10/0x10
kthread+0x2f2/0x390
? __pfx_jfs_lazycommit+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x4d/0x80
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
This happens when 'clear_inode()' makes an attempt to finalize an underlying
JFS inode of unknown type. According to JFS layout description from
https://jfs.sourceforge.net/project/pub/jfslayout.pdf, inode types from 5 to
15 are reserved for future extensions and should not be encountered on a valid
filesystem. So add an extra check for valid inode type in 'copy_from_dinode()'. |
| In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Force migrate away hrtimers queued after CPUHP_AP_HRTIMERS_DYING
hrtimers are migrated away from the dying CPU to any online target at
the CPUHP_AP_HRTIMERS_DYING stage in order not to delay bandwidth timers
handling tasks involved in the CPU hotplug forward progress.
However wakeups can still be performed by the outgoing CPU after
CPUHP_AP_HRTIMERS_DYING. Those can result again in bandwidth timers being
armed. Depending on several considerations (crystal ball power management
based election, earliest timer already enqueued, timer migration enabled or
not), the target may eventually be the current CPU even if offline. If that
happens, the timer is eventually ignored.
The most notable example is RCU which had to deal with each and every of
those wake-ups by deferring them to an online CPU, along with related
workarounds:
_ e787644caf76 (rcu: Defer RCU kthreads wakeup when CPU is dying)
_ 9139f93209d1 (rcu/nocb: Fix RT throttling hrtimer armed from offline CPU)
_ f7345ccc62a4 (rcu/nocb: Fix rcuog wake-up from offline softirq)
The problem isn't confined to RCU though as the stop machine kthread
(which runs CPUHP_AP_HRTIMERS_DYING) reports its completion at the end
of its work through cpu_stop_signal_done() and performs a wake up that
eventually arms the deadline server timer:
WARNING: CPU: 94 PID: 588 at kernel/time/hrtimer.c:1086 hrtimer_start_range_ns+0x289/0x2d0
CPU: 94 UID: 0 PID: 588 Comm: migration/94 Not tainted
Stopper: multi_cpu_stop+0x0/0x120 <- stop_machine_cpuslocked+0x66/0xc0
RIP: 0010:hrtimer_start_range_ns+0x289/0x2d0
Call Trace:
<TASK>
start_dl_timer
enqueue_dl_entity
dl_server_start
enqueue_task_fair
enqueue_task
ttwu_do_activate
try_to_wake_up
complete
cpu_stopper_thread
Instead of providing yet another bandaid to work around the situation, fix
it in the hrtimers infrastructure instead: always migrate away a timer to
an online target whenever it is enqueued from an offline CPU.
This will also allow to revert all the above RCU disgraceful hacks. |