| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work
The rehash delayed work is rescheduled with a delay if the number of
credits at end of the work is not negative as supposedly it means that
the migration ended. Otherwise, it is rescheduled immediately.
After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during
rehash" the above is no longer accurate as a non-negative number of
credits is no longer indicative of the migration being done. It can also
happen if the work encountered an error in which case the migration will
resume the next time the work is scheduled.
The significance of the above is that it is possible for the work to be
pending and associated with hints that were allocated when the migration
started. This leads to the hints being leaked [1] when the work is
canceled while pending as part of ACL region dismantle.
Fix by freeing the hints if hints are associated with a work that was
canceled while pending.
Blame the original commit since the reliance on not having a pending
work associated with hints is fragile.
[1]
unreferenced object 0xffff88810e7c3000 (size 256):
comm "kworker/0:16", pid 176, jiffies 4295460353
hex dump (first 32 bytes):
00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a.......
00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@...........
backtrace (crc 2544ddb9):
[<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0
[<000000004d9a1ad9>] objagg_hints_get+0x42/0x390
[<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400
[<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160
[<00000000e81fd734>] process_one_work+0x59c/0xf20
[<00000000ceee9e81>] worker_thread+0x799/0x12c0
[<00000000bda6fe39>] kthread+0x246/0x300
[<0000000070056d23>] ret_from_fork+0x34/0x70
[<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix NULL-deref on non-serdev suspend
Qualcomm ROME controllers can be registered from the Bluetooth line
discipline and in this case the HCI UART serdev pointer is NULL.
Add the missing sanity check to prevent a NULL-pointer dereference when
wakeup() is called for a non-serdev controller during suspend.
Just return true for now to restore the original behaviour and address
the crash with pre-6.2 kernels, which do not have commit e9b3e5b8c657
("Bluetooth: hci_qca: only assign wakeup with serial port support") that
causes the crash to happen already at setup() time. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix NULL-deref on non-serdev setup
Qualcomm ROME controllers can be registered from the Bluetooth line
discipline and in this case the HCI UART serdev pointer is NULL.
Add the missing sanity check to prevent a NULL-pointer dereference when
setup() is called for a non-serdev controller. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Prevent double free on error
The error handling path in its_vpe_irq_domain_alloc() causes a double free
when its_vpe_init() fails after successfully allocating at least one
interrupt. This happens because its_vpe_irq_domain_free() frees the
interrupts along with the area bitmap and the vprop_page and
its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the
vprop_page again.
Fix this by unconditionally invoking its_vpe_irq_domain_free() which
handles all cases correctly and by removing the bitmap/vprop_page freeing
from its_vpe_irq_domain_alloc().
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix shrinker NULL crash with cgroup_disable=memory
Christian reports a NULL deref in zswap that he bisected down to the zswap
shrinker. The issue also cropped up in the bug trackers of libguestfs [1]
and the Red Hat bugzilla [2].
The problem is that when memcg is disabled with the boot time flag, the
zswap shrinker might get called with sc->memcg == NULL. This is okay in
many places, like the lruvec operations. But it crashes in
memcg_page_state() - which is only used due to the non-node accounting of
cgroup's the zswap memory to begin with.
Nhat spotted that the memcg can be NULL in the memcg-disabled case, and I
was then able to reproduce the crash locally as well.
[1] https://github.com/libguestfs/libguestfs/issues/139
[2] https://bugzilla.redhat.com/show_bug.cgi?id=2275252 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: dbg-tlv: ensure NUL termination
The iwl_fw_ini_debug_info_tlv is used as a string, so we must
ensure the string is terminated correctly before using it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft->g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft->g will be freed again. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA
This dma_alloc_coherent() is undone neither in the remove function, nor in
the error handling path of fsl_qdma_probe().
Switch to the managed version to fix both issues. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/lima: fix a memleak in lima_heap_alloc
When lima_vm_map_bo fails, the resources need to be deallocated, or
there will be memleaks. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer()
In the for statement of lbs_allocate_cmd_buffer(), if the allocation of
cmdarray[i].cmdbuf fails, both cmdarray and cmdarray[i].cmdbuf needs to
be freed. Otherwise, there will be memleaks in lbs_allocate_cmd_buffer(). |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: fix overflow check in io_recvmsg_mshot_prep()
The "controllen" variable is type size_t (unsigned long). Casting it
to int could lead to an integer underflow.
The check_add_overflow() function considers the type of the destination
which is type int. If we add two positive values and the result cannot
fit in an integer then that's counted as an overflow.
However, if we cast "controllen" to an int and it turns negative, then
negative values *can* fit into an int type so there is no overflow.
Good: 100 + (unsigned long)-4 = 96 <-- overflow
Bad: 100 + (int)-4 = 96 <-- no overflow
I deleted the cast of the sizeof() as well. That's not a bug but the
cast is unnecessary. |
| In the Linux kernel, the following vulnerability has been resolved:
vt: fix unicode buffer corruption when deleting characters
This is the same issue that was fixed for the VGA text buffer in commit
39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the
buffer"). The cure is also the same i.e. replace memcpy() with memmove()
due to the overlaping buffers. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach
This is the candidate patch of CVE-2023-47233 :
https://nvd.nist.gov/vuln/detail/CVE-2023-47233
In brcm80211 driver,it starts with the following invoking chain
to start init a timeout worker:
->brcmf_usb_probe
->brcmf_usb_probe_cb
->brcmf_attach
->brcmf_bus_started
->brcmf_cfg80211_attach
->wl_init_priv
->brcmf_init_escan
->INIT_WORK(&cfg->escan_timeout_work,
brcmf_cfg80211_escan_timeout_worker);
If we disconnect the USB by hotplug, it will call
brcmf_usb_disconnect to make cleanup. The invoking chain is :
brcmf_usb_disconnect
->brcmf_usb_disconnect_cb
->brcmf_detach
->brcmf_cfg80211_detach
->kfree(cfg);
While the timeout woker may still be running. This will cause
a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker.
Fix it by deleting the timer and canceling the worker in
brcmf_cfg80211_detach.
[arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix deadlock while reading mqd from debugfs
An errant disk backup on my desktop got into debugfs and triggered the
following deadlock scenario in the amdgpu debugfs files. The machine
also hard-resets immediately after those lines are printed (although I
wasn't able to reproduce that part when reading by hand):
[ 1318.016074][ T1082] ======================================================
[ 1318.016607][ T1082] WARNING: possible circular locking dependency detected
[ 1318.017107][ T1082] 6.8.0-rc7-00015-ge0c8221b72c0 #17 Not tainted
[ 1318.017598][ T1082] ------------------------------------------------------
[ 1318.018096][ T1082] tar/1082 is trying to acquire lock:
[ 1318.018585][ T1082] ffff98c44175d6a0 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x40/0x80
[ 1318.019084][ T1082]
[ 1318.019084][ T1082] but task is already holding lock:
[ 1318.020052][ T1082] ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu]
[ 1318.020607][ T1082]
[ 1318.020607][ T1082] which lock already depends on the new lock.
[ 1318.020607][ T1082]
[ 1318.022081][ T1082]
[ 1318.022081][ T1082] the existing dependency chain (in reverse order) is:
[ 1318.023083][ T1082]
[ 1318.023083][ T1082] -> #2 (reservation_ww_class_mutex){+.+.}-{3:3}:
[ 1318.024114][ T1082] __ww_mutex_lock.constprop.0+0xe0/0x12f0
[ 1318.024639][ T1082] ww_mutex_lock+0x32/0x90
[ 1318.025161][ T1082] dma_resv_lockdep+0x18a/0x330
[ 1318.025683][ T1082] do_one_initcall+0x6a/0x350
[ 1318.026210][ T1082] kernel_init_freeable+0x1a3/0x310
[ 1318.026728][ T1082] kernel_init+0x15/0x1a0
[ 1318.027242][ T1082] ret_from_fork+0x2c/0x40
[ 1318.027759][ T1082] ret_from_fork_asm+0x11/0x20
[ 1318.028281][ T1082]
[ 1318.028281][ T1082] -> #1 (reservation_ww_class_acquire){+.+.}-{0:0}:
[ 1318.029297][ T1082] dma_resv_lockdep+0x16c/0x330
[ 1318.029790][ T1082] do_one_initcall+0x6a/0x350
[ 1318.030263][ T1082] kernel_init_freeable+0x1a3/0x310
[ 1318.030722][ T1082] kernel_init+0x15/0x1a0
[ 1318.031168][ T1082] ret_from_fork+0x2c/0x40
[ 1318.031598][ T1082] ret_from_fork_asm+0x11/0x20
[ 1318.032011][ T1082]
[ 1318.032011][ T1082] -> #0 (&mm->mmap_lock){++++}-{3:3}:
[ 1318.032778][ T1082] __lock_acquire+0x14bf/0x2680
[ 1318.033141][ T1082] lock_acquire+0xcd/0x2c0
[ 1318.033487][ T1082] __might_fault+0x58/0x80
[ 1318.033814][ T1082] amdgpu_debugfs_mqd_read+0x103/0x250 [amdgpu]
[ 1318.034181][ T1082] full_proxy_read+0x55/0x80
[ 1318.034487][ T1082] vfs_read+0xa7/0x360
[ 1318.034788][ T1082] ksys_read+0x70/0xf0
[ 1318.035085][ T1082] do_syscall_64+0x94/0x180
[ 1318.035375][ T1082] entry_SYSCALL_64_after_hwframe+0x46/0x4e
[ 1318.035664][ T1082]
[ 1318.035664][ T1082] other info that might help us debug this:
[ 1318.035664][ T1082]
[ 1318.036487][ T1082] Chain exists of:
[ 1318.036487][ T1082] &mm->mmap_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex
[ 1318.036487][ T1082]
[ 1318.037310][ T1082] Possible unsafe locking scenario:
[ 1318.037310][ T1082]
[ 1318.037838][ T1082] CPU0 CPU1
[ 1318.038101][ T1082] ---- ----
[ 1318.038350][ T1082] lock(reservation_ww_class_mutex);
[ 1318.038590][ T1082] lock(reservation_ww_class_acquire);
[ 1318.038839][ T1082] lock(reservation_ww_class_mutex);
[ 1318.039083][ T1082] rlock(&mm->mmap_lock);
[ 1318.039328][ T1082]
[ 1318.039328][ T1082] *** DEADLOCK ***
[ 1318.039328][ T1082]
[ 1318.040029][ T1082] 1 lock held by tar/1082:
[ 1318.040259][ T1082] #0: ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu]
[ 1318.040560][ T1082]
[ 1318.040560][ T1082] stack backtrace:
[
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix stale locked mutex in nouveau_gem_ioctl_pushbuf
If VM_BIND is enabled on the client the legacy submission ioctl can't be
used, however if a client tries to do so regardless it will return an
error. In this case the clients mutex remained unlocked leading to a
deadlock inside nouveau_drm_postclose or any other nouveau ioctl call. |
| In the Linux kernel, the following vulnerability has been resolved:
fpga: region: add owner module and take its refcount
The current implementation of the fpga region assumes that the low-level
module registers a driver for the parent device and uses its owner pointer
to take the module's refcount. This approach is problematic since it can
lead to a null pointer dereference while attempting to get the region
during programming if the parent device does not have a driver.
To address this problem, add a module owner pointer to the fpga_region
struct and use it to take the module's refcount. Modify the functions for
registering a region to take an additional owner module parameter and
rename them to avoid conflicts. Use the old function names for helper
macros that automatically set the module that registers the region as the
owner. This ensures compatibility with existing low-level control modules
and reduces the chances of registering a region without setting the owner.
Also, update the documentation to keep it consistent with the new interface
for registering an fpga region. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: of_property: Return error for int_map allocation failure
Return -ENOMEM from of_pci_prop_intr_map() if kcalloc() fails to prevent a
NULL pointer dereference in this case.
[bhelgaas: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock
It needs to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock
to avoid racing with checkpoint, otherwise, filesystem metadata including
blkaddr in dnode, inode fields and .total_valid_block_count may be
corrupted after SPO case. |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Disable auto-enable of exclusive INTx IRQ
Currently for devices requiring masking at the irqchip for INTx, ie.
devices without DisINTx support, the IRQ is enabled in request_irq()
and subsequently disabled as necessary to align with the masked status
flag. This presents a window where the interrupt could fire between
these events, resulting in the IRQ incrementing the disable depth twice.
This would be unrecoverable for a user since the masked flag prevents
nested enables through vfio.
Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx
is never auto-enabled, then unmask as required. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: mt7622-apmixedsys: Fix an error handling path in clk_mt8135_apmixed_probe()
'clk_data' is allocated with mtk_devm_alloc_clk_data(). So calling
mtk_free_clk_data() explicitly in the remove function would lead to a
double-free.
Remove the redundant call. |