| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA Merlin Transformers4Rec for all platforms contains a vulnerability where an attacker could cause code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Nsight Visual Studio for Windows contains a vulnerability in Nsight Monitor where an attacker can execute arbitrary code with the same privileges as the NVIDIA Nsight Visual Studio Edition Monitor application. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, data tampering, denial of service, and information disclosure. |
| NVIDIA Nsight Systems for Windows contains a vulnerability in the application’s DLL loading mechanism where an attacker could cause an uncontrolled search path element by exploiting insecure DLL search paths. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service and information disclosure. |
| NVIDIA Nsight Systems for Linux contains a vulnerability in the .run installer, where an attacker could cause an OS command injection by supplying a malicious string to the installation path. A successful exploit of this vulnerability might lead to escalation of privileges, code execution, data tampering, denial of service, and information disclosure. |
| Denial-of-service condition in M-Files Server versions before 25.11.15392.1, before 25.2 LTS SR2 and before 25.8 LTS SR2 allows an authenticated user to cause the MFserver process to crash. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix NULL deref when deactivating inactive aggregate in qfq_reset
`qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class
itself is active.
Two qfq_class objects may point to the same leaf_qdisc. This happens
when:
1. one QFQ qdisc is attached to the dev as the root qdisc, and
2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get()
/ qdisc_put()) and is pending to be destroyed, as in function
tc_new_tfilter.
When packets are enqueued through the root QFQ qdisc, the shared
leaf_qdisc->q.qlen increases. At the same time, the second QFQ
qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters
qfq_reset() with its own q->q.qlen == 0, but its class's leaf
qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate
an inactive aggregate and trigger a null-deref in qfq_deactivate_agg:
[ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 0.903571] #PF: supervisor write access in kernel mode
[ 0.903860] #PF: error_code(0x0002) - not-present page
[ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0
[ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI
[ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE
[ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014
[ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2))
[ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0
Code starting with the faulting instruction
===========================================
0: 0f 84 4d 01 00 00 je 0x153
6: 48 89 70 18 mov %rsi,0x18(%rax)
a: 8b 4b 10 mov 0x10(%rbx),%ecx
d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx
14: 48 8b 78 08 mov 0x8(%rax),%rdi
18: 48 d3 e2 shl %cl,%rdx
1b: 48 21 f2 and %rsi,%rdx
1e: 48 2b 13 sub (%rbx),%rdx
21: 48 8b 30 mov (%rax),%rsi
24: 48 d3 ea shr %cl,%rdx
27: 8b 4b 18 mov 0x18(%rbx),%ecx
...
[ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246
[ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000
[ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000
[ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000
[ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880
[ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000
[ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0
[ 0.910247] PKRU: 55555554
[ 0.910391] Call Trace:
[ 0.910527] <TASK>
[ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485)
[ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036)
[ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076)
[ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447)
[ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958)
[ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861)
[ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550)
[ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344)
[ 0.912296] ? __alloc_skb (net/core/skbuff.c:706)
[ 0.912484] netlink_sendmsg (net/netlink/af
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: fix signedness in this_len calculation
When importing and using buffers, buf->len is considered unsigned.
However, buf->len is converted to signed int when committing. This can
lead to unexpected behavior if the buffer is large enough to be
interpreted as a negative value. Make min_t calculation unsigned. |
| A flaw was found in coredns. This issue could lead to invalid cache entries returning due to incorrectly implemented caching. |
| A flaw was identified in Keycloak’s OpenID Connect Dynamic Client Registration feature when clients authenticate using private_key_jwt. The issue allows a client to specify an arbitrary jwks_uri, which Keycloak then retrieves without validating the destination. This enables attackers to coerce the Keycloak server into making HTTP requests to internal or restricted network resources. As a result, attackers can probe internal services and cloud metadata endpoints, creating an information disclosure and reconnaissance risk. |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| IBM Concert 1.0.0 through 2.1.0 is vulnerable to malicious file upload by not validating the content of the file uploaded to the web interface. |
| IBM Sterling Connect:Direct for UNIX Container 6.3.0.0 through 6.3.0.6 Interim Fix 016, and 6.4.0.0 through 6.4.0.3 Interim Fix 019 IBM® Sterling Connect:Direct for UNIX contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 7.1.2-13 and 6.9.13-38, a heap buffer overflow vulnerability in the XBM image decoder (ReadXBMImage) allows an attacker to write controlled data past the allocated heap buffer when processing a maliciously crafted image file. Any operation that reads or identifies an image can trigger the overflow, making it exploitable via common image upload and processing pipelines. Versions 7.1.2-13 and 6.9.13-38 fix the issue. |
| Microsoft Edge Elevation Service exposes a privileged COM interface that inadequately validates the privileges of the calling process. A standard (non‑administrator) local user can invoke the IElevatorEdge interface method LaunchUpdateCmdElevatedAndWait, causing the service to execute privileged update commands as LocalSystem.
This allows a non‑administrator to enable or disable Windows Virtualization‑Based Security (VBS) by modifying protected system registry keys under HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard. Disabling VBS weakens critical platform protections such as Credential Guard, Hypervisor‑protected Code Integrity (HVCI), and the Secure Kernel, resulting in a security feature bypass. |