Search Results (16623 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71107 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: ensure node page reads complete before f2fs_put_super() finishes Xfstests generic/335, generic/336 sometimes crash with the following message: F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1 ------------[ cut here ]------------ kernel BUG at fs/f2fs/super.c:1939! Oops: invalid opcode: 0000 [#1] SMP NOPTI CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none) Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:f2fs_put_super+0x3b3/0x3c0 Call Trace: <TASK> generic_shutdown_super+0x7e/0x190 kill_block_super+0x1a/0x40 kill_f2fs_super+0x9d/0x190 deactivate_locked_super+0x30/0xb0 cleanup_mnt+0xba/0x150 task_work_run+0x5c/0xa0 exit_to_user_mode_loop+0xb7/0xc0 do_syscall_64+0x1ae/0x1c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> ---[ end trace 0000000000000000 ]--- It appears that sometimes it is possible that f2fs_put_super() is called before all node page reads are completed. Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem.
CVE-2025-71142 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpuset: fix warning when disabling remote partition A warning was triggered as follows: WARNING: kernel/cgroup/cpuset.c:1651 at remote_partition_disable+0xf7/0x110 RIP: 0010:remote_partition_disable+0xf7/0x110 RSP: 0018:ffffc90001947d88 EFLAGS: 00000206 RAX: 0000000000007fff RBX: ffff888103b6e000 RCX: 0000000000006f40 RDX: 0000000000006f00 RSI: ffffc90001947da8 RDI: ffff888103b6e000 RBP: ffff888103b6e000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: ffff88810b2e2728 R12: ffffc90001947da8 R13: 0000000000000000 R14: ffffc90001947da8 R15: ffff8881081f1c00 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f55c8bbe0b2 CR3: 000000010b14c000 CR4: 00000000000006f0 Call Trace: <TASK> update_prstate+0x2d3/0x580 cpuset_partition_write+0x94/0xf0 kernfs_fop_write_iter+0x147/0x200 vfs_write+0x35d/0x500 ksys_write+0x66/0xe0 do_syscall_64+0x6b/0x390 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f55c8cd4887 Reproduction steps (on a 16-CPU machine): # cd /sys/fs/cgroup/ # mkdir A1 # echo +cpuset > A1/cgroup.subtree_control # echo "0-14" > A1/cpuset.cpus.exclusive # mkdir A1/A2 # echo "0-14" > A1/A2/cpuset.cpus.exclusive # echo "root" > A1/A2/cpuset.cpus.partition # echo 0 > /sys/devices/system/cpu/cpu15/online # echo member > A1/A2/cpuset.cpus.partition When CPU 15 is offlined, subpartitions_cpus gets cleared because no CPUs remain available for the top_cpuset, forcing partitions to share CPUs with the top_cpuset. In this scenario, disabling the remote partition triggers a warning stating that effective_xcpus is not a subset of subpartitions_cpus. Partitions should be invalidated in this case to inform users that the partition is now invalid(cpus are shared with top_cpuset). To fix this issue: 1. Only emit the warning only if subpartitions_cpus is not empty and the effective_xcpus is not a subset of subpartitions_cpus. 2. During the CPU hotplug process, invalidate partitions if subpartitions_cpus is empty.
CVE-2025-71144 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure context reset on disconnect() After the blamed commit below, if the MPC subflow is already in TCP_CLOSE status or has fallback to TCP at mptcp_disconnect() time, mptcp_do_fastclose() skips setting the `send_fastclose flag` and the later __mptcp_close_ssk() does not reset anymore the related subflow context. Any later connection will be created with both the `request_mptcp` flag and the msk-level fallback status off (it is unconditionally cleared at MPTCP disconnect time), leading to a warning in subflow_data_ready(): WARNING: CPU: 26 PID: 8996 at net/mptcp/subflow.c:1519 subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13)) Modules linked in: CPU: 26 UID: 0 PID: 8996 Comm: syz.22.39 Not tainted 6.18.0-rc7-05427-g11fc074f6c36 #1 PREEMPT(voluntary) Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 RIP: 0010:subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13)) Code: 90 0f 0b 90 90 e9 04 fe ff ff e8 b7 1e f5 fe 89 ee bf 07 00 00 00 e8 db 19 f5 fe 83 fd 07 0f 84 35 ff ff ff e8 9d 1e f5 fe 90 <0f> 0b 90 e9 27 ff ff ff e8 8f 1e f5 fe 4c 89 e7 48 89 de e8 14 09 RSP: 0018:ffffc9002646fb30 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff88813b218000 RCX: ffffffff825c8435 RDX: ffff8881300b3580 RSI: ffffffff825c8443 RDI: 0000000000000005 RBP: 000000000000000b R08: ffffffff825c8435 R09: 000000000000000b R10: 0000000000000005 R11: 0000000000000007 R12: ffff888131ac0000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f88330af6c0(0000) GS:ffff888a93dd2000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f88330aefe8 CR3: 000000010ff59000 CR4: 0000000000350ef0 Call Trace: <TASK> tcp_data_ready (net/ipv4/tcp_input.c:5356) tcp_data_queue (net/ipv4/tcp_input.c:5445) tcp_rcv_state_process (net/ipv4/tcp_input.c:7165) tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1955) __release_sock (include/net/sock.h:1158 (discriminator 6) net/core/sock.c:3180 (discriminator 6)) release_sock (net/core/sock.c:3737) mptcp_sendmsg (net/mptcp/protocol.c:1763 net/mptcp/protocol.c:1857) inet_sendmsg (net/ipv4/af_inet.c:853 (discriminator 7)) __sys_sendto (net/socket.c:727 (discriminator 15) net/socket.c:742 (discriminator 15) net/socket.c:2244 (discriminator 15)) __x64_sys_sendto (net/socket.c:2247) do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f883326702d Address the issue setting an explicit `fastclosing` flag at fastclose time, and checking such flag after mptcp_do_fastclose().
CVE-2025-71110 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/slub: reset KASAN tag in defer_free() before accessing freed memory When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free() before defer_free(). On ARM64 with MTE (Memory Tagging Extension), kasan_slab_free() poisons the memory and changes the tag from the original (e.g., 0xf3) to a poison tag (0xfe). When defer_free() then tries to write to the freed object to build the deferred free list via llist_add(), the pointer still has the old tag, causing a tag mismatch and triggering a KASAN use-after-free report: BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537 Write at addr f3f000000854f020 by task kworker/u8:6/983 Pointer tag: [f3], memory tag: [fe] Fix this by calling kasan_reset_tag() before accessing the freed memory. This is safe because defer_free() is part of the allocator itself and is expected to manipulate freed memory for bookkeeping purposes.
CVE-2025-71139 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: kernel/kexec: fix IMA when allocation happens in CMA area *** Bug description *** When I tested kexec with the latest kernel, I ran into the following warning: [ 40.712410] ------------[ cut here ]------------ [ 40.712576] WARNING: CPU: 2 PID: 1562 at kernel/kexec_core.c:1001 kimage_map_segment+0x144/0x198 [...] [ 40.816047] Call trace: [ 40.818498] kimage_map_segment+0x144/0x198 (P) [ 40.823221] ima_kexec_post_load+0x58/0xc0 [ 40.827246] __do_sys_kexec_file_load+0x29c/0x368 [...] [ 40.855423] ---[ end trace 0000000000000000 ]--- *** How to reproduce *** This bug is only triggered when the kexec target address is allocated in the CMA area. If no CMA area is reserved in the kernel, use the "cma=" option in the kernel command line to reserve one. *** Root cause *** The commit 07d24902977e ("kexec: enable CMA based contiguous allocation") allocates the kexec target address directly on the CMA area to avoid copying during the jump. In this case, there is no IND_SOURCE for the kexec segment. But the current implementation of kimage_map_segment() assumes that IND_SOURCE pages exist and map them into a contiguous virtual address by vmap(). *** Solution *** If IMA segment is allocated in the CMA area, use its page_address() directly.
CVE-2025-71106 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: PM: Fix reverse check in filesystems_freeze_callback() The freeze_all_ptr check in filesystems_freeze_callback() introduced by commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which quite confusingly causes all file systems to be frozen when filesystem_freeze_enabled is false. On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to trigger, most likely due to an attempt to freeze a file system that is not ready for that. Add a logical negation to the check in question to reverse it as appropriate.
CVE-2025-71103 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: adreno: fix deferencing ifpc_reglist when not declared On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist if still deferenced in a7xx_patch_pwrup_reglist() which causes a kernel crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 ... pc : a6xx_hw_init+0x155c/0x1e4c [msm] lr : a6xx_hw_init+0x9a8/0x1e4c [msm] ... Call trace: a6xx_hw_init+0x155c/0x1e4c [msm] (P) msm_gpu_hw_init+0x58/0x88 [msm] adreno_load_gpu+0x94/0x1fc [msm] msm_open+0xe4/0xf4 [msm] drm_file_alloc+0x1a0/0x2e4 [drm] drm_client_init+0x7c/0x104 [drm] drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib] drm_client_setup+0xb4/0xd8 [drm_client_lib] msm_drm_kms_post_init+0x2c/0x3c [msm] msm_drm_init+0x1a4/0x228 [msm] msm_drm_bind+0x30/0x3c [msm] ... Check the validity of ifpc_reglist before deferencing the table to setup the register values. Patchwork: https://patchwork.freedesktop.org/patch/688944/
CVE-2025-71140 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Use spinlock for context list protection lock Previously a mutex was added to protect the encoder and decoder context lists from unexpected changes originating from the SCP IP block, causing the context pointer to go invalid, resulting in a NULL pointer dereference in the IPI handler. Turns out on the MT8173, the VPU IPI handler is called from hard IRQ context. This causes a big warning from the scheduler. This was first reported downstream on the ChromeOS kernels, but is also reproducible on mainline using Fluster with the FFmpeg v4l2m2m decoders. Even though the actual capture format is not supported, the affected code paths are triggered. Since this lock just protects the context list and operations on it are very fast, it should be OK to switch to a spinlock.
CVE-2024-41073 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: nvme: avoid double free special payload If a discard request needs to be retried, and that retry may fail before a new special payload is added, a double free will result. Clear the RQF_SPECIAL_LOAD when the request is cleaned.
CVE-2024-41000 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: block/ioctl: prefer different overflow check Running syzkaller with the newly reintroduced signed integer overflow sanitizer shows this report: [ 62.982337] ------------[ cut here ]------------ [ 62.985692] cgroup: Invalid name [ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46 [ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1 [ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long' [ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1 [ 62.999369] random: crng reseeded on system resumption [ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000) [ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1 [ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 63.000682] Call Trace: [ 63.000686] <TASK> [ 63.000731] dump_stack_lvl+0x93/0xd0 [ 63.000919] __get_user_pages+0x903/0xd30 [ 63.001030] __gup_longterm_locked+0x153e/0x1ba0 [ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50 [ 63.001072] ? try_get_folio+0x29c/0x2d0 [ 63.001083] internal_get_user_pages_fast+0x1119/0x1530 [ 63.001109] iov_iter_extract_pages+0x23b/0x580 [ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220 [ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410 [ 63.001297] __iomap_dio_rw+0xab4/0x1810 [ 63.001316] iomap_dio_rw+0x45/0xa0 [ 63.001328] ext4_file_write_iter+0xdde/0x1390 [ 63.001372] vfs_write+0x599/0xbd0 [ 63.001394] ksys_write+0xc8/0x190 [ 63.001403] do_syscall_64+0xd4/0x1b0 [ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60 [ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77 [ 63.001535] RIP: 0033:0x7f7fd3ebf539 [ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 [ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539 [ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004 [ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000 [ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8 ... [ 63.018142] ---[ end trace ]--- Historically, the signed integer overflow sanitizer did not work in the kernel due to its interaction with `-fwrapv` but this has since been changed [1] in the newest version of Clang; It was re-enabled in the kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow sanitizer"). Let's rework this overflow checking logic to not actually perform an overflow during the check itself, thus avoiding the UBSAN splat. [1]: https://github.com/llvm/llvm-project/pull/82432
CVE-2025-4598 5 Debian, Linux, Oracle and 2 more 10 Debian Linux, Linux Kernel, Linux and 7 more 2026-01-13 4.7 Medium
A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process. A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality.
CVE-2013-0648 7 Adobe, Apple, Linux and 4 more 12 Flash Player, Mac Os X, Linux Kernel and 9 more 2026-01-12 8.8 High
Unspecified vulnerability in the ExternalInterface ActionScript functionality in Adobe Flash Player before 10.3.183.67 and 11.x before 11.6.602.171 on Windows and Mac OS X, and before 10.3.183.67 and 11.x before 11.2.202.273 on Linux, allows remote attackers to execute arbitrary code via crafted SWF content, as exploited in the wild in February 2013.
CVE-2025-39710 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 7.1 High
In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access.
CVE-2025-39714 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: usbtv: Lock resolution while streaming When an program is streaming (ffplay) and another program (qv4l2) changes the TV standard from NTSC to PAL, the kernel crashes due to trying to copy to unmapped memory. Changing from NTSC to PAL increases the resolution in the usbtv struct, but the video plane buffer isn't adjusted, so it overflows. [hverkuil: call vb2_is_busy instead of vb2_is_streaming]
CVE-2025-39724 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: 8250: fix panic due to PSLVERR When the PSLVERR_RESP_EN parameter is set to 1, the device generates an error response if an attempt is made to read an empty RBR (Receive Buffer Register) while the FIFO is enabled. In serial8250_do_startup(), calling serial_port_out(port, UART_LCR, UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter function enables the FIFO via serial_out(p, UART_FCR, p->fcr). Execution proceeds to the serial_port_in(port, UART_RX). This satisfies the PSLVERR trigger condition. When another CPU (e.g., using printk()) is accessing the UART (UART is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) == (lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter dw8250_force_idle(). Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock to fix this issue. Panic backtrace: [ 0.442336] Oops - unknown exception [#1] [ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a [ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e ... [ 0.442416] console_on_rootfs+0x26/0x70
CVE-2025-39730 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 7.8 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix filehandle bounds checking in nfs_fh_to_dentry() The function needs to check the minimal filehandle length before it can access the embedded filehandle.
CVE-2025-39734 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Revert "fs/ntfs3: Replace inode_trylock with inode_lock" This reverts commit 69505fe98f198ee813898cbcaf6770949636430b. Initially, conditional lock acquisition was removed to fix an xfstest bug that was observed during internal testing. The deadlock reported by syzbot is resolved by reintroducing conditional acquisition. The xfstest bug no longer occurs on kernel version 6.16-rc1 during internal testing. I assume that changes in other modules may have contributed to this.
CVE-2025-38051 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: Fix use-after-free in cifs_fill_dirent There is a race condition in the readdir concurrency process, which may access the rsp buffer after it has been released, triggering the following KASAN warning. ================================================================== BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs] Read of size 4 at addr ffff8880099b819c by task a.out/342975 CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x53/0x70 print_report+0xce/0x640 kasan_report+0xb8/0xf0 cifs_fill_dirent+0xb03/0xb60 [cifs] cifs_readdir+0x12cb/0x3190 [cifs] iterate_dir+0x1a1/0x520 __x64_sys_getdents+0x134/0x220 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f996f64b9f9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8 RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88 R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000 </TASK> Allocated by task 408: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x6e/0x70 kmem_cache_alloc_noprof+0x117/0x3d0 mempool_alloc_noprof+0xf2/0x2c0 cifs_buf_get+0x36/0x80 [cifs] allocate_buffers+0x1d2/0x330 [cifs] cifs_demultiplex_thread+0x22b/0x2690 [cifs] kthread+0x394/0x720 ret_from_fork+0x34/0x70 ret_from_fork_asm+0x1a/0x30 Freed by task 342979: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kmem_cache_free+0x2b8/0x500 cifs_buf_release+0x3c/0x70 [cifs] cifs_readdir+0x1c97/0x3190 [cifs] iterate_dir+0x1a1/0x520 __x64_sys_getdents64+0x134/0x220 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff8880099b8000 which belongs to the cache cifs_request of size 16588 The buggy address is located 412 bytes inside of freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc) The buggy address belongs to the physical page: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8 head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 anon flags: 0x80000000000040(head|node=0|zone=1) page_type: f5(slab) raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001 raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000 head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001 head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000 head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== POC is available in the link [1]. The problem triggering process is as follows: Process 1 Process 2 ----------------------------------- ---truncated---
CVE-2024-56644 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/ipv6: release expired exception dst cached in socket Dst objects get leaked in ip6_negative_advice() when this function is executed for an expired IPv6 route located in the exception table. There are several conditions that must be fulfilled for the leak to occur: * an ICMPv6 packet indicating a change of the MTU for the path is received, resulting in an exception dst being created * a TCP connection that uses the exception dst for routing packets must start timing out so that TCP begins retransmissions * after the exception dst expires, the FIB6 garbage collector must not run before TCP executes ip6_negative_advice() for the expired exception dst When TCP executes ip6_negative_advice() for an exception dst that has expired and if no other socket holds a reference to the exception dst, the refcount of the exception dst is 2, which corresponds to the increment made by dst_init() and the increment made by the TCP socket for which the connection is timing out. The refcount made by the socket is never released. The refcount of the dst is decremented in sk_dst_reset() but that decrement is counteracted by a dst_hold() intentionally placed just before the sk_dst_reset() in ip6_negative_advice(). After ip6_negative_advice() has finished, there is no other object tied to the dst. The socket lost its reference stored in sk_dst_cache and the dst is no longer in the exception table. The exception dst becomes a leaked object. As a result of this dst leak, an unbalanced refcount is reported for the loopback device of a net namespace being destroyed under kernels that do not contain e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"): unregister_netdevice: waiting for lo to become free. Usage count = 2 Fix the dst leak by removing the dst_hold() in ip6_negative_advice(). The patch that introduced the dst_hold() in ip6_negative_advice() was 92f1655aa2b22 ("net: fix __dst_negative_advice() race"). But 92f1655aa2b22 merely refactored the code with regards to the dst refcount so the issue was present even before 92f1655aa2b22. The bug was introduced in 54c1a859efd9f ("ipv6: Don't drop cache route entry unless timer actually expired.") where the expired cached route is deleted and the sk_dst_cache member of the socket is set to NULL by calling dst_negative_advice() but the refcount belonging to the socket is left unbalanced. The IPv4 version - ipv4_negative_advice() - is not affected by this bug. When the TCP connection times out ipv4_negative_advice() merely resets the sk_dst_cache of the socket while decrementing the refcount of the exception dst.
CVE-2025-68766 1 Linux 1 Linux Kernel 2026-01-11 N/A
In the Linux kernel, the following vulnerability has been resolved: irqchip/mchp-eic: Fix error code in mchp_eic_domain_alloc() If irq_domain_translate_twocell() sets "hwirq" to >= MCHP_EIC_NIRQ (2) then it results in an out of bounds access. The code checks for invalid values, but doesn't set the error code. Return -EINVAL in that case, instead of returning success.