| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Free Photo & Video Vault 0.0.2 contains a directory traversal web vulnerability that allows remote attackers to manipulate application path requests and access sensitive system files. Attackers can exploit the vulnerability without privileges to retrieve environment variables and access unauthorized system paths. |
| A vulnerability was identified in Zhong Bang CRMEB up to 5.6.3. This affects the function detail/tidyOrder of the file /api/store_integral/order/detail/:uni. The manipulation of the argument order_id leads to improper authorization. The attack can be initiated remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| BootCommerce 3.2.1 contains persistent input validation vulnerabilities that allow remote attackers to inject malicious script code through guest order checkout input fields. Attackers can exploit unvalidated input parameters to execute arbitrary scripts, potentially leading to session hijacking, phishing attacks, and application module manipulation. |
| A vulnerability has been found in DJI Mavic Mini, Air, Spark and Mini SE up to 01.00.0500. Affected by this vulnerability is an unknown functionality of the component Enhanced Wi-Fi Pairing. The manipulation leads to authentication bypass by capture-replay. The attack must be carried out from within the local network. A high degree of complexity is needed for the attack. The exploitation appears to be difficult. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was found in D-Link DSL-6641K N8.TR069.20131126. Affected by this issue is the function doSubmitPPP of the file sp_pppoe_user.js. The manipulation of the argument Username results in cross site scripting. The attack may be launched remotely. The exploit has been made public and could be used. This vulnerability only affects products that are no longer supported by the maintainer. |
| In Modem, there is a possible system crash due to an uncaught exception. This could lead to remote denial of service, if a UE has connected to a rogue base station controlled by the attacker, with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: MOLY01738310; Issue ID: MSV-5933. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. Collision with another CVE. |
| Dell PremierColor Panel Driver, versions prior to 1.0.0.1 A01, contains an Improper Access Control vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Elevation of Privileges. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: The vendor mentioned in the original disclosure filed a report that this issue affects a different vendor. The researcher was not able to provide a proof for his disputed claim which is why the CNA decided to revoke the whole entry. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: The vendor mentioned in the original disclosure filed a report that this issue affects a different vendor. The researcher was not able to provide a proof for his disputed claim which is why the CNA decided to revoke the whole entry. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: The vendor mentioned in the original disclosure filed a report that this issue affects a different vendor. The researcher was not able to provide a proof for his disputed claim which is why the CNA decided to revoke the whole entry. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| pyasn1 is a generic ASN.1 library for Python. Prior to 0.6.2, a Denial-of-Service issue has been found that leads to memory exhaustion from malformed RELATIVE-OID with excessive continuation octets. This vulnerability is fixed in 0.6.2. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| When a user explicitly requested Thunderbird to decrypt an inline OpenPGP message that was embedded in a text section of an email that was formatted and styled with HTML and CSS, then the decrypted contents were rendered in a context in which the CSS styles from the outer messages were active. If the user had additionally allowed loading of the remote content referenced by the outer email message, and the email was crafted by the sender using a combination of CSS rules and fonts and animations, then it was possible to extract the secret contents of the email. This vulnerability affects Thunderbird < 147.0.1 and Thunderbird < 140.7.1. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gud: fix NULL fb and crtc dereferences on USB disconnect
On disconnect drm_atomic_helper_disable_all() is called which
sets both the fb and crtc for a plane to NULL before invoking a commit.
This causes a kernel oops on every display disconnect.
Add guards for those dereferences. |
| In the Linux kernel, the following vulnerability has been resolved:
pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node()
In nfs4_ff_alloc_deviceid_node(), if the allocation for ds_versions fails,
the function jumps to the out_scratch label without freeing the already
allocated dsaddrs list, leading to a memory leak.
Fix this by jumping to the out_err_drain_dsaddrs label, which properly
frees the dsaddrs list before cleaning up other resources. |
| In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: allow partial RX URB allocation to succeed
When es58x_alloc_rx_urbs() fails to allocate the requested number of
URBs but succeeds in allocating some, it returns an error code.
This causes es58x_open() to return early, skipping the cleanup label
'free_urbs', which leads to the anchored URBs being leaked.
As pointed out by maintainer Vincent Mailhol, the driver is designed
to handle partial URB allocation gracefully. Therefore, partial
allocation should not be treated as a fatal error.
Modify es58x_alloc_rx_urbs() to return 0 if at least one URB has been
allocated, restoring the intended behavior and preventing the leak
in es58x_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: release path before iget_failed() in btrfs_read_locked_inode()
In btrfs_read_locked_inode() if we fail to lookup the inode, we jump to
the 'out' label with a path that has a read locked leaf and then we call
iget_failed(). This can result in a ABBA deadlock, since iget_failed()
triggers inode eviction and that causes the release of the delayed inode,
which must lock the delayed inode's mutex, and a task updating a delayed
inode starts by taking the node's mutex and then modifying the inode's
subvolume btree.
Syzbot reported the following lockdep splat for this:
======================================================
WARNING: possible circular locking dependency detected
syzkaller #0 Not tainted
------------------------------------------------------
btrfs-cleaner/8725 is trying to acquire lock:
ffff0000d6826a48 (&delayed_node->mutex){+.+.}-{4:4}, at: __btrfs_release_delayed_node+0xa0/0x9b0 fs/btrfs/delayed-inode.c:290
but task is already holding lock:
ffff0000dbeba878 (btrfs-tree-00){++++}-{4:4}, at: btrfs_tree_read_lock_nested+0x44/0x2ec fs/btrfs/locking.c:145
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-tree-00){++++}-{4:4}:
__lock_release kernel/locking/lockdep.c:5574 [inline]
lock_release+0x198/0x39c kernel/locking/lockdep.c:5889
up_read+0x24/0x3c kernel/locking/rwsem.c:1632
btrfs_tree_read_unlock+0xdc/0x298 fs/btrfs/locking.c:169
btrfs_tree_unlock_rw fs/btrfs/locking.h:218 [inline]
btrfs_search_slot+0xa6c/0x223c fs/btrfs/ctree.c:2133
btrfs_lookup_inode+0xd8/0x38c fs/btrfs/inode-item.c:395
__btrfs_update_delayed_inode+0x124/0xed0 fs/btrfs/delayed-inode.c:1032
btrfs_update_delayed_inode fs/btrfs/delayed-inode.c:1118 [inline]
__btrfs_commit_inode_delayed_items+0x15f8/0x1748 fs/btrfs/delayed-inode.c:1141
__btrfs_run_delayed_items+0x1ac/0x514 fs/btrfs/delayed-inode.c:1176
btrfs_run_delayed_items_nr+0x28/0x38 fs/btrfs/delayed-inode.c:1219
flush_space+0x26c/0xb68 fs/btrfs/space-info.c:828
do_async_reclaim_metadata_space+0x110/0x364 fs/btrfs/space-info.c:1158
btrfs_async_reclaim_metadata_space+0x90/0xd8 fs/btrfs/space-info.c:1226
process_one_work+0x7e8/0x155c kernel/workqueue.c:3263
process_scheduled_works kernel/workqueue.c:3346 [inline]
worker_thread+0x958/0xed8 kernel/workqueue.c:3427
kthread+0x5fc/0x75c kernel/kthread.c:463
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:844
-> #0 (&delayed_node->mutex){+.+.}-{4:4}:
check_prev_add kernel/locking/lockdep.c:3165 [inline]
check_prevs_add kernel/locking/lockdep.c:3284 [inline]
validate_chain kernel/locking/lockdep.c:3908 [inline]
__lock_acquire+0x1774/0x30a4 kernel/locking/lockdep.c:5237
lock_acquire+0x14c/0x2e0 kernel/locking/lockdep.c:5868
__mutex_lock_common+0x1d0/0x2678 kernel/locking/mutex.c:598
__mutex_lock kernel/locking/mutex.c:760 [inline]
mutex_lock_nested+0x2c/0x38 kernel/locking/mutex.c:812
__btrfs_release_delayed_node+0xa0/0x9b0 fs/btrfs/delayed-inode.c:290
btrfs_release_delayed_node fs/btrfs/delayed-inode.c:315 [inline]
btrfs_remove_delayed_node+0x68/0x84 fs/btrfs/delayed-inode.c:1326
btrfs_evict_inode+0x578/0xe28 fs/btrfs/inode.c:5587
evict+0x414/0x928 fs/inode.c:810
iput_final fs/inode.c:1914 [inline]
iput+0x95c/0xad4 fs/inode.c:1966
iget_failed+0xec/0x134 fs/bad_inode.c:248
btrfs_read_locked_inode+0xe1c/0x1234 fs/btrfs/inode.c:4101
btrfs_iget+0x1b0/0x264 fs/btrfs/inode.c:5837
btrfs_run_defrag_inode fs/btrfs/defrag.c:237 [inline]
btrfs_run_defrag_inodes+0x520/0xdc4 fs/btrf
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv
mlx5e_priv is an unstable structure that can be memset(0) if profile
attaching fails.
Pass netdev to mlx5e_destroy_netdev() to guarantee it will work on a
valid netdev.
On mlx5e_remove: Check validity of priv->profile, before attempting
to cleanup any resources that might be not there.
This fixes a kernel oops in mlx5e_remove when switchdev mode fails due
to change profile failure.
$ devlink dev eswitch set pci/0000:00:03.0 mode switchdev
Error: mlx5_core: Failed setting eswitch to offloads.
dmesg:
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
$ devlink dev reload pci/0000:00:03.0 ==> oops
BUG: kernel NULL pointer dereference, address: 0000000000000370
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc5+ #115 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:mlx5e_dcbnl_dscp_app+0x23/0x100
RSP: 0018:ffffc9000083f8b8 EFLAGS: 00010286
RAX: ffff8881126fc380 RBX: ffff8881015ac400 RCX: ffffffff826ffc45
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8881035109c0
RBP: ffff8881035109c0 R08: ffff888101e3e838 R09: ffff888100264e10
R10: ffffc9000083f898 R11: ffffc9000083f8a0 R12: ffff888101b921a0
R13: ffff888101b921a0 R14: ffff8881015ac9a0 R15: ffff8881015ac400
FS: 00007f789a3c8740(0000) GS:ffff88856aa59000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000370 CR3: 000000010b6c0001 CR4: 0000000000370ef0
Call Trace:
<TASK>
mlx5e_remove+0x57/0x110
device_release_driver_internal+0x19c/0x200
bus_remove_device+0xc6/0x130
device_del+0x160/0x3d0
? devl_param_driverinit_value_get+0x2d/0x90
mlx5_detach_device+0x89/0xe0
mlx5_unload_one_devl_locked+0x3a/0x70
mlx5_devlink_reload_down+0xc8/0x220
devlink_reload+0x7d/0x260
devlink_nl_reload_doit+0x45b/0x5a0
genl_family_rcv_msg_doit+0xe8/0x140 |