| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix IO hang from sbitmap wakeup race
In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered
with the following blk_mq_get_driver_tag() in case of getting driver
tag failure.
Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe
the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime
blk_mq_mark_tag_wait() can't get driver tag successfully.
This issue can be reproduced by running the following test in loop, and
fio hang can be observed in < 30min when running it on my test VM
in laptop.
modprobe -r scsi_debug
modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4
dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename`
fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \
--runtime=100 --numjobs=40 --time_based --name=test \
--ioengine=libaio
Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which
is just fine in case of running out of tag. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Fix UAF during login when accessing the shost ipaddress
If during iscsi_sw_tcp_session_create() iscsi_tcp_r2tpool_alloc() fails,
userspace could be accessing the host's ipaddress attr. If we then free the
session via iscsi_session_teardown() while userspace is still accessing the
session we will hit a use after free bug.
Set the tcp_sw_host->session after we have completed session creation and
can no longer fail. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: require CAP_NET_ADMIN to attach N_GSM0710 ldisc
Any unprivileged user can attach N_GSM0710 ldisc, but it requires
CAP_NET_ADMIN to create a GSM network anyway.
Require initial namespace CAP_NET_ADMIN to do that. |
| In the Linux kernel, the following vulnerability has been resolved:
atl1c: Work around the DMA RX overflow issue
This is based on alx driver commit 881d0327db37 ("net: alx: Work around
the DMA RX overflow issue").
The alx and atl1c drivers had RX overflow error which was why a custom
allocator was created to avoid certain addresses. The simpler workaround
then created for alx driver, but not for atl1c due to lack of tester.
Instead of using a custom allocator, check the allocated skb address and
use skb_reserve() to move away from problematic 0x...fc0 address.
Tested on AR8131 on Acer 4540. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Remove BUG_ON in the case of an empty event pool
In practice the driver should never send more commands than are allocated
to a queue's event pool. In the unlikely event that this happens, the code
asserts a BUG_ON, and in the case that the kernel is not configured to
crash on panic returns a junk event pointer from the empty event list
causing things to spiral from there. This BUG_ON is a historical artifact
of the ibmvfc driver first being upstreamed, and it is well known now that
the use of BUG_ON is bad practice except in the most unrecoverable
scenario. There is nothing about this scenario that prevents the driver
from recovering and carrying on.
Remove the BUG_ON in question from ibmvfc_get_event() and return a NULL
pointer in the case of an empty event pool. Update all call sites to
ibmvfc_get_event() to check for a NULL pointer and perfrom the appropriate
failure or recovery action. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup()
fc_lport_ptp_setup() did not check the return value of fc_rport_create()
which can return NULL and would cause a NULL pointer dereference. Address
this issue by checking return value of fc_rport_create() and log error
message on fc_rport_create() failed. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: fix implicit overflow on virtio_max_dma_size
The following codes have an implicit conversion from size_t to u32:
(u32)max_size = (size_t)virtio_max_dma_size(vdev);
This may lead overflow, Ex (size_t)4G -> (u32)0. Once
virtio_max_dma_size() has a larger size than U32_MAX, use U32_MAX
instead. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by changing j1939_socks_lock to rwlock
The following 3 locks would race against each other, causing the
deadlock situation in the Syzbot bug report:
- j1939_socks_lock
- active_session_list_lock
- sk_session_queue_lock
A reasonable fix is to change j1939_socks_lock to an rwlock, since in
the rare situations where a write lock is required for the linked list
that j1939_socks_lock is protecting, the code does not attempt to
acquire any more locks. This would break the circular lock dependency,
where, for example, the current thread already locks j1939_socks_lock
and attempts to acquire sk_session_queue_lock, and at the same time,
another thread attempts to acquire j1939_socks_lock while holding
sk_session_queue_lock.
NOTE: This patch along does not fix the unregister_netdevice bug
reported by Syzbot; instead, it solves a deadlock situation to prepare
for one or more further patches to actually fix the Syzbot bug, which
appears to be a reference counting problem within the j1939 codebase.
[mkl: remove unrelated newline change] |
| In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: Synchronize devfreq_monitor_[start/stop]
There is a chance if a frequent switch of the governor
done in a loop result in timer list corruption where
timer cancel being done from two place one from
cancel_delayed_work_sync() and followed by expire_timers()
can be seen from the traces[1].
while true
do
echo "simple_ondemand" > /sys/class/devfreq/1d84000.ufshc/governor
echo "performance" > /sys/class/devfreq/1d84000.ufshc/governor
done
It looks to be issue with devfreq driver where
device_monitor_[start/stop] need to synchronized so that
delayed work should get corrupted while it is either
being queued or running or being cancelled.
Let's use polling flag and devfreq lock to synchronize the
queueing the timer instance twice and work data being
corrupted.
[1]
...
..
<idle>-0 [003] 9436.209662: timer_cancel timer=0xffffff80444f0428
<idle>-0 [003] 9436.209664: timer_expire_entry timer=0xffffff80444f0428 now=0x10022da1c function=__typeid__ZTSFvP10timer_listE_global_addr baseclk=0x10022da1c
<idle>-0 [003] 9436.209718: timer_expire_exit timer=0xffffff80444f0428
kworker/u16:6-14217 [003] 9436.209863: timer_start timer=0xffffff80444f0428 function=__typeid__ZTSFvP10timer_listE_global_addr expires=0x10022da2b now=0x10022da1c flags=182452227
vendor.xxxyyy.ha-1593 [004] 9436.209888: timer_cancel timer=0xffffff80444f0428
vendor.xxxyyy.ha-1593 [004] 9436.216390: timer_init timer=0xffffff80444f0428
vendor.xxxyyy.ha-1593 [004] 9436.216392: timer_start timer=0xffffff80444f0428 function=__typeid__ZTSFvP10timer_listE_global_addr expires=0x10022da2c now=0x10022da1d flags=186646532
vendor.xxxyyy.ha-1593 [005] 9436.220992: timer_cancel timer=0xffffff80444f0428
xxxyyyTraceManag-7795 [004] 9436.261641: timer_cancel timer=0xffffff80444f0428
[2]
9436.261653][ C4] Unable to handle kernel paging request at virtual address dead00000000012a
[ 9436.261664][ C4] Mem abort info:
[ 9436.261666][ C4] ESR = 0x96000044
[ 9436.261669][ C4] EC = 0x25: DABT (current EL), IL = 32 bits
[ 9436.261671][ C4] SET = 0, FnV = 0
[ 9436.261673][ C4] EA = 0, S1PTW = 0
[ 9436.261675][ C4] Data abort info:
[ 9436.261677][ C4] ISV = 0, ISS = 0x00000044
[ 9436.261680][ C4] CM = 0, WnR = 1
[ 9436.261682][ C4] [dead00000000012a] address between user and kernel address ranges
[ 9436.261685][ C4] Internal error: Oops: 96000044 [#1] PREEMPT SMP
[ 9436.261701][ C4] Skip md ftrace buffer dump for: 0x3a982d0
...
[ 9436.262138][ C4] CPU: 4 PID: 7795 Comm: TraceManag Tainted: G S W O 5.10.149-android12-9-o-g17f915d29d0c #1
[ 9436.262141][ C4] Hardware name: Qualcomm Technologies, Inc. (DT)
[ 9436.262144][ C4] pstate: 22400085 (nzCv daIf +PAN -UAO +TCO BTYPE=--)
[ 9436.262161][ C4] pc : expire_timers+0x9c/0x438
[ 9436.262164][ C4] lr : expire_timers+0x2a4/0x438
[ 9436.262168][ C4] sp : ffffffc010023dd0
[ 9436.262171][ C4] x29: ffffffc010023df0 x28: ffffffd0636fdc18
[ 9436.262178][ C4] x27: ffffffd063569dd0 x26: ffffffd063536008
[ 9436.262182][ C4] x25: 0000000000000001 x24: ffffff88f7c69280
[ 9436.262185][ C4] x23: 00000000000000e0 x22: dead000000000122
[ 9436.262188][ C4] x21: 000000010022da29 x20: ffffff8af72b4e80
[ 9436.262191][ C4] x19: ffffffc010023e50 x18: ffffffc010025038
[ 9436.262195][ C4] x17: 0000000000000240 x16: 0000000000000201
[ 9436.262199][ C4] x15: ffffffffffffffff x14: ffffff889f3c3100
[ 9436.262203][ C4] x13: ffffff889f3c3100 x12: 00000000049f56b8
[ 9436.262207][ C4] x11: 00000000049f56b8 x10: 00000000ffffffff
[ 9436.262212][ C4] x9 : ffffffc010023e50 x8 : dead000000000122
[ 9436.262216][ C4] x7 : ffffffffffffffff x6 : ffffffc0100239d8
[ 9436.262220][ C4] x5 : 0000000000000000 x4 : 0000000000000101
[ 9436.262223][ C4] x3 : 0000000000000080 x2 : ffffff8
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid online resizing failures due to oversized flex bg
When we online resize an ext4 filesystem with a oversized flexbg_size,
mkfs.ext4 -F -G 67108864 $dev -b 4096 100M
mount $dev $dir
resize2fs $dev 16G
the following WARN_ON is triggered:
==================================================================
WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550
Modules linked in: sg(E)
CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314
RIP: 0010:__alloc_pages+0x411/0x550
Call Trace:
<TASK>
__kmalloc_large_node+0xa2/0x200
__kmalloc+0x16e/0x290
ext4_resize_fs+0x481/0xd80
__ext4_ioctl+0x1616/0x1d90
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0xf0/0x150
do_syscall_64+0x3b/0x90
==================================================================
This is because flexbg_size is too large and the size of the new_group_data
array to be allocated exceeds MAX_ORDER. Currently, the minimum value of
MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding
maximum number of groups that can be allocated is:
(PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845
And the value that is down-aligned to the power of 2 is 16384. Therefore,
this value is defined as MAX_RESIZE_BG, and the number of groups added
each time does not exceed this value during resizing, and is added multiple
times to complete the online resizing. The difference is that the metadata
in a flex_bg may be more dispersed. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Fix crash when setting number of cpus to an odd number
When the number of cpu cores is adjusted to 7 or other odd numbers,
the zone size will become an odd number.
The address of the zone will become:
addr of zone0 = BASE
addr of zone1 = BASE + zone_size
addr of zone2 = BASE + zone_size*2
...
The address of zone1/3/5/7 will be mapped to non-alignment va.
Eventually crashes will occur when accessing these va.
So, use ALIGN_DOWN() to make sure the zone size is even
to avoid this bug. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/lib: Validate size for vector operations
Some of the fp/vmx code in sstep.c assume a certain maximum size for the
instructions being emulated. The size of those operations however is
determined separately in analyse_instr().
Add a check to validate the assumption on the maximum size of the
operations, so as to prevent any unintended kernel stack corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rt2x00: restart beacon queue when hardware reset
When a hardware reset is triggered, all registers are reset, so all
queues are forced to stop in hardware interface. However, mac80211
will not automatically stop the queue. If we don't manually stop the
beacon queue, the queue will be deadlocked and unable to start again.
This patch fixes the issue where Apple devices cannot connect to the
AP after calling ieee80211_restart_hw(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Don't unref the same fb many times by mistake due to deadlock handling
If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl()
we proceed to unref the fb and then retry the whole thing from the top.
But we forget to reset the fb pointer back to NULL, and so if we then
get another error during the retry, before the fb lookup, we proceed
the unref the same fb again without having gotten another reference.
The end result is that the fb will (eventually) end up being freed
while it's still in use.
Reset fb to NULL once we've unreffed it to avoid doing it again
until we've done another fb lookup.
This turned out to be pretty easy to hit on a DG2 when doing async
flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I
saw that drm_closefb() simply got stuck in a busy loop while walking
the framebuffer list. Fortunately I was able to convince it to oops
instead, and from there it was easier to track down the culprit. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: hub: Guard against accesses to uninitialized BOS descriptors
Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h
access fields inside udev->bos without checking if it was allocated and
initialized. If usb_get_bos_descriptor() fails for whatever
reason, udev->bos will be NULL and those accesses will result in a
crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 <HASH:1f9e 1>
Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:hub_port_reset+0x193/0x788
Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9
RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310
RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840
RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0
Call Trace:
hub_event+0x73f/0x156e
? hub_activate+0x5b7/0x68f
process_one_work+0x1a2/0x487
worker_thread+0x11a/0x288
kthread+0x13a/0x152
? process_one_work+0x487/0x487
? kthread_associate_blkcg+0x70/0x70
ret_from_fork+0x1f/0x30
Fall back to a default behavior if the BOS descriptor isn't accessible
and skip all the functionalities that depend on it: LPM support checks,
Super Speed capabilitiy checks, U1/U2 states setup. |
| In the Linux kernel, the following vulnerability has been resolved:
block: add check that partition length needs to be aligned with block size
Before calling add partition or resize partition, there is no check
on whether the length is aligned with the logical block size.
If the logical block size of the disk is larger than 512 bytes,
then the partition size maybe not the multiple of the logical block size,
and when the last sector is read, bio_truncate() will adjust the bio size,
resulting in an IO error if the size of the read command is smaller than
the logical block size.If integrity data is supported, this will also
result in a null pointer dereference when calling bio_integrity_free. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential OOBs in smb2_parse_contexts()
Validate offsets and lengths before dereferencing create contexts in
smb2_parse_contexts().
This fixes following oops when accessing invalid create contexts from
server:
BUG: unable to handle page fault for address: ffff8881178d8cc3
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 4a01067 P4D 4a01067 PUD 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs]
Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00
00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7
7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00
RSP: 0018:ffffc900007939e0 EFLAGS: 00010216
RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90
RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000
RBP: ffff8881178d8cbf R08: ffffc90000793c22 R09: 0000000000000000
R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000
R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22
FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x181/0x480
? search_module_extables+0x19/0x60
? srso_alias_return_thunk+0x5/0xfbef5
? exc_page_fault+0x1b6/0x1c0
? asm_exc_page_fault+0x26/0x30
? smb2_parse_contexts+0xa0/0x3a0 [cifs]
SMB2_open+0x38d/0x5f0 [cifs]
? smb2_is_path_accessible+0x138/0x260 [cifs]
smb2_is_path_accessible+0x138/0x260 [cifs]
cifs_is_path_remote+0x8d/0x230 [cifs]
cifs_mount+0x7e/0x350 [cifs]
cifs_smb3_do_mount+0x128/0x780 [cifs]
smb3_get_tree+0xd9/0x290 [cifs]
vfs_get_tree+0x2c/0x100
? capable+0x37/0x70
path_mount+0x2d7/0xb80
? srso_alias_return_thunk+0x5/0xfbef5
? _raw_spin_unlock_irqrestore+0x44/0x60
__x64_sys_mount+0x11a/0x150
do_syscall_64+0x47/0xf0
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f8737657b1e |
| A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix a suspicious RCU usage warning
I received the following warning while running cthon against an ontap
server running pNFS:
[ 57.202521] =============================
[ 57.202522] WARNING: suspicious RCU usage
[ 57.202523] 6.7.0-rc3-g2cc14f52aeb7 #41492 Not tainted
[ 57.202525] -----------------------------
[ 57.202525] net/sunrpc/xprtmultipath.c:349 RCU-list traversed in non-reader section!!
[ 57.202527]
other info that might help us debug this:
[ 57.202528]
rcu_scheduler_active = 2, debug_locks = 1
[ 57.202529] no locks held by test5/3567.
[ 57.202530]
stack backtrace:
[ 57.202532] CPU: 0 PID: 3567 Comm: test5 Not tainted 6.7.0-rc3-g2cc14f52aeb7 #41492 5b09971b4965c0aceba19f3eea324a4a806e227e
[ 57.202534] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
[ 57.202536] Call Trace:
[ 57.202537] <TASK>
[ 57.202540] dump_stack_lvl+0x77/0xb0
[ 57.202551] lockdep_rcu_suspicious+0x154/0x1a0
[ 57.202556] rpc_xprt_switch_has_addr+0x17c/0x190 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202596] rpc_clnt_setup_test_and_add_xprt+0x50/0x180 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202621] ? rpc_clnt_add_xprt+0x254/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202646] rpc_clnt_add_xprt+0x27a/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202671] ? __pfx_rpc_clnt_setup_test_and_add_xprt+0x10/0x10 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202696] nfs4_pnfs_ds_connect+0x345/0x760 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202728] ? __pfx_nfs4_test_session_trunk+0x10/0x10 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202754] nfs4_fl_prepare_ds+0x75/0xc0 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a]
[ 57.202760] filelayout_write_pagelist+0x4a/0x200 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a]
[ 57.202765] pnfs_generic_pg_writepages+0xbe/0x230 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202788] __nfs_pageio_add_request+0x3fd/0x520 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202813] nfs_pageio_add_request+0x18b/0x390 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202831] nfs_do_writepage+0x116/0x1e0 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202849] nfs_writepages_callback+0x13/0x30 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202866] write_cache_pages+0x265/0x450
[ 57.202870] ? __pfx_nfs_writepages_callback+0x10/0x10 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202891] nfs_writepages+0x141/0x230 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202913] do_writepages+0xd2/0x230
[ 57.202917] ? filemap_fdatawrite_wbc+0x5c/0x80
[ 57.202921] filemap_fdatawrite_wbc+0x67/0x80
[ 57.202924] filemap_write_and_wait_range+0xd9/0x170
[ 57.202930] nfs_wb_all+0x49/0x180 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202947] nfs4_file_flush+0x72/0xb0 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202969] __se_sys_close+0x46/0xd0
[ 57.202972] do_syscall_64+0x68/0x100
[ 57.202975] ? do_syscall_64+0x77/0x100
[ 57.202976] ? do_syscall_64+0x77/0x100
[ 57.202979] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 57.202982] RIP: 0033:0x7fe2b12e4a94
[ 57.202985] Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 18 0e 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 44 c3 0f 1f 00 48 83 ec 18 89 7c 24 0c e8 c3
[ 57.202987] RSP: 002b:00007ffe857ddb38 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
[ 57.202989] RAX: ffffffffffffffda RBX: 00007ffe857dfd68 RCX: 00007fe2b12e4a94
[ 57.202991] RDX: 0000000000002000 RSI: 00007ffe857ddc40 RDI: 0000000000000003
[ 57.202992] RBP: 00007ffe857dfc50 R08: 7fffffffffffffff R09: 0000000065650f49
[ 57.202993] R10: 00007f
---truncated--- |
| A heap out-of-bounds write affecting Linux since v2.6.19-rc1 was discovered in net/netfilter/x_tables.c. This allows an attacker to gain privileges or cause a DoS (via heap memory corruption) through user name space |