| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse
The following warning appears when running syzkaller, and this issue also
exists in the mainline code.
------------[ cut here ]------------
list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100.
WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130
Modules linked in:
CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__list_add_valid_or_report+0xf7/0x130
RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817
RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001
RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c
R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100
R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48
FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 80000000
Call Trace:
<TASK>
input_register_handler+0xb3/0x210
mac_hid_start_emulation+0x1c5/0x290
mac_hid_toggle_emumouse+0x20a/0x240
proc_sys_call_handler+0x4c2/0x6e0
new_sync_write+0x1b1/0x2d0
vfs_write+0x709/0x950
ksys_write+0x12a/0x250
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x78/0xe2
The WARNING occurs when two processes concurrently write to the mac-hid
emulation sysctl, causing a race condition in mac_hid_toggle_emumouse().
Both processes read old_val=0, then both try to register the input handler,
leading to a double list_add of the same handler.
CPU0 CPU1
------------------------- -------------------------
vfs_write() //write 1 vfs_write() //write 1
proc_sys_write() proc_sys_write()
mac_hid_toggle_emumouse() mac_hid_toggle_emumouse()
old_val = *valp // old_val=0
old_val = *valp // old_val=0
mutex_lock_killable()
proc_dointvec() // *valp=1
mac_hid_start_emulation()
input_register_handler()
mutex_unlock()
mutex_lock_killable()
proc_dointvec()
mac_hid_start_emulation()
input_register_handler() //Trigger Warning
mutex_unlock()
Fix this by moving the old_val read inside the mutex lock region. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl818x: rtl8187: Fix potential buffer underflow in rtl8187_rx_cb()
The rtl8187_rx_cb() calculates the rx descriptor header address
by subtracting its size from the skb tail pointer.
However, it does not validate if the received packet
(skb->len from urb->actual_length) is large enough to contain this
header.
If a truncated packet is received, this will lead to a buffer
underflow, reading memory before the start of the skb data area,
and causing a kernel panic.
Add length checks for both rtl8187 and rtl8187b descriptor headers
before attempting to access them, dropping the packet cleanly if the
check fails. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Clear NFS_INO_LAYOUTCOMMIT in pnfs_mark_layout_stateid_invalid
Fixes a crash when layout is null during this call stack:
write_inode
-> nfs4_write_inode
-> pnfs_layoutcommit_inode
pnfs_set_layoutcommit relies on the lseg refcount to keep the layout
around. Need to clear NFS_INO_LAYOUTCOMMIT otherwise we might attempt
to reference a null layout. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: dice: fix buffer overflow in detect_stream_formats()
The function detect_stream_formats() reads the stream_count value directly
from a FireWire device without validating it. This can lead to
out-of-bounds writes when a malicious device provides a stream_count value
greater than MAX_STREAMS.
Fix by applying the same validation to both TX and RX stream counts in
detect_stream_formats(). |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: also call xfrm_state_delete_tunnel at destroy time for states that were never added
In commit b441cf3f8c4b ("xfrm: delete x->tunnel as we delete x"), I
missed the case where state creation fails between full
initialization (->init_state has been called) and being inserted on
the lists.
In this situation, ->init_state has been called, so for IPcomp
tunnels, the fallback tunnel has been created and added onto the
lists, but the user state never gets added, because we fail before
that. The user state doesn't go through __xfrm_state_delete, so we
don't call xfrm_state_delete_tunnel for those states, and we end up
leaking the FB tunnel.
There are several codepaths affected by this: the add/update paths, in
both net/key and xfrm, and the migrate code (xfrm_migrate,
xfrm_state_migrate). A "proper" rollback of the init_state work would
probably be doable in the add/update code, but for migrate it gets
more complicated as multiple states may be involved.
At some point, the new (not-inserted) state will be destroyed, so call
xfrm_state_delete_tunnel during xfrm_state_gc_destroy. Most states
will have their fallback tunnel cleaned up during __xfrm_state_delete,
which solves the issue that b441cf3f8c4b (and other patches before it)
aimed at. All states (including FB tunnels) will be removed from the
lists once xfrm_state_fini has called flush_work(&xfrm_state_gc_work). |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: delete x->tunnel as we delete x
The ipcomp fallback tunnels currently get deleted (from the various
lists and hashtables) as the last user state that needed that fallback
is destroyed (not deleted). If a reference to that user state still
exists, the fallback state will remain on the hashtables/lists,
triggering the WARN in xfrm_state_fini. Because of those remaining
references, the fix in commit f75a2804da39 ("xfrm: destroy xfrm_state
synchronously on net exit path") is not complete.
We recently fixed one such situation in TCP due to defered freeing of
skbs (commit 9b6412e6979f ("tcp: drop secpath at the same time as we
currently drop dst")). This can also happen due to IP reassembly: skbs
with a secpath remain on the reassembly queue until netns
destruction. If we can't guarantee that the queues are flushed by the
time xfrm_state_fini runs, there may still be references to a (user)
xfrm_state, preventing the timely deletion of the corresponding
fallback state.
Instead of chasing each instance of skbs holding a secpath one by one,
this patch fixes the issue directly within xfrm, by deleting the
fallback state as soon as the last user state depending on it has been
deleted. Destruction will still happen when the final reference is
dropped.
A separate lockdep class for the fallback state is required since
we're going to lock x->tunnel while x is locked. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix a null-ptr access in the cursor snooper
Check that the resource which is converted to a surface exists before
trying to use the cursor snooper on it.
vmw_cmd_res_check allows explicit invalid (SVGA3D_INVALID_ID) identifiers
because some svga commands accept SVGA3D_INVALID_ID to mean "no surface",
unfortunately functions that accept the actual surfaces as objects might
(and in case of the cursor snooper, do not) be able to handle null
objects. Make sure that we validate not only the identifier (via the
vmw_cmd_res_check) but also check that the actual resource exists before
trying to do something with it.
Fixes unchecked null-ptr reference in the snooping code. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: Harden s32ton() against conversion to 0 bits
Testing by the syzbot fuzzer showed that the HID core gets a
shift-out-of-bounds exception when it tries to convert a 32-bit
quantity to a 0-bit quantity. Ideally this should never occur, but
there are buggy devices and some might have a report field with size
set to zero; we shouldn't reject the report or the device just because
of that.
Instead, harden the s32ton() routine so that it returns a reasonable
result instead of crashing when it is called with the number of bits
set to 0 -- the same as what snto32() does. |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: Fix use-after-free in page_pool_recycle_in_ring
syzbot reported a uaf in page_pool_recycle_in_ring:
BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862
Read of size 8 at addr ffff8880286045a0 by task syz.0.284/6943
CPU: 0 UID: 0 PID: 6943 Comm: syz.0.284 Not tainted 6.13.0-rc3-syzkaller-gdfa94ce54f41 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:165 [inline]
_raw_spin_unlock_bh+0x1b/0x40 kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
ptr_ring_produce_bh include/linux/ptr_ring.h:164 [inline]
page_pool_recycle_in_ring net/core/page_pool.c:707 [inline]
page_pool_put_unrefed_netmem+0x748/0xb00 net/core/page_pool.c:826
page_pool_put_netmem include/net/page_pool/helpers.h:323 [inline]
page_pool_put_full_netmem include/net/page_pool/helpers.h:353 [inline]
napi_pp_put_page+0x149/0x2b0 net/core/skbuff.c:1036
skb_pp_recycle net/core/skbuff.c:1047 [inline]
skb_free_head net/core/skbuff.c:1094 [inline]
skb_release_data+0x6c4/0x8a0 net/core/skbuff.c:1125
skb_release_all net/core/skbuff.c:1190 [inline]
__kfree_skb net/core/skbuff.c:1204 [inline]
sk_skb_reason_drop+0x1c9/0x380 net/core/skbuff.c:1242
kfree_skb_reason include/linux/skbuff.h:1263 [inline]
__skb_queue_purge_reason include/linux/skbuff.h:3343 [inline]
root cause is:
page_pool_recycle_in_ring
ptr_ring_produce
spin_lock(&r->producer_lock);
WRITE_ONCE(r->queue[r->producer++], ptr)
//recycle last page to pool
page_pool_release
page_pool_scrub
page_pool_empty_ring
ptr_ring_consume
page_pool_return_page //release all page
__page_pool_destroy
free_percpu(pool->recycle_stats);
free(pool) //free
spin_unlock(&r->producer_lock); //pool->ring uaf read
recycle_stat_inc(pool, ring);
page_pool can be free while page pool recycle the last page in ring.
Add producer-lock barrier to page_pool_release to prevent the page
pool from being free before all pages have been recycled.
recycle_stat_inc() is empty when CONFIG_PAGE_POOL_STATS is not
enabled, which will trigger Wempty-body build warning. Add definition
for pool stat macro to fix warning. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix "KASAN: slab-use-after-free Read in ib_register_device" problem
Call Trace:
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
strlen+0x93/0xa0 lib/string.c:420
__fortify_strlen include/linux/fortify-string.h:268 [inline]
get_kobj_path_length lib/kobject.c:118 [inline]
kobject_get_path+0x3f/0x2a0 lib/kobject.c:158
kobject_uevent_env+0x289/0x1870 lib/kobject_uevent.c:545
ib_register_device drivers/infiniband/core/device.c:1472 [inline]
ib_register_device+0x8cf/0xe00 drivers/infiniband/core/device.c:1393
rxe_register_device+0x275/0x320 drivers/infiniband/sw/rxe/rxe_verbs.c:1552
rxe_net_add+0x8e/0xe0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0x70/0x190 drivers/infiniband/sw/rxe/rxe.c:225
nldev_newlink+0x3a3/0x680 drivers/infiniband/core/nldev.c:1796
rdma_nl_rcv_msg+0x387/0x6e0 drivers/infiniband/core/netlink.c:195
rdma_nl_rcv_skb.constprop.0.isra.0+0x2e5/0x450
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg net/socket.c:727 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2566
___sys_sendmsg+0x134/0x1d0 net/socket.c:2620
__sys_sendmsg+0x16d/0x220 net/socket.c:2652
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
This problem is similar to the problem that the
commit 1d6a9e7449e2 ("RDMA/core: Fix use-after-free when rename device name")
fixes.
The root cause is: the function ib_device_rename() renames the name with
lock. But in the function kobject_uevent(), this name is accessed without
lock protection at the same time.
The solution is to add the lock protection when this name is accessed in
the function kobject_uevent(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix out-of-bound read in ext4_xattr_inode_dec_ref_all()
There's issue as follows:
BUG: KASAN: use-after-free in ext4_xattr_inode_dec_ref_all+0x6ff/0x790
Read of size 4 at addr ffff88807b003000 by task syz-executor.0/15172
CPU: 3 PID: 15172 Comm: syz-executor.0
Call Trace:
__dump_stack lib/dump_stack.c:82 [inline]
dump_stack+0xbe/0xfd lib/dump_stack.c:123
print_address_description.constprop.0+0x1e/0x280 mm/kasan/report.c:400
__kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560
kasan_report+0x3a/0x50 mm/kasan/report.c:585
ext4_xattr_inode_dec_ref_all+0x6ff/0x790 fs/ext4/xattr.c:1137
ext4_xattr_delete_inode+0x4c7/0xda0 fs/ext4/xattr.c:2896
ext4_evict_inode+0xb3b/0x1670 fs/ext4/inode.c:323
evict+0x39f/0x880 fs/inode.c:622
iput_final fs/inode.c:1746 [inline]
iput fs/inode.c:1772 [inline]
iput+0x525/0x6c0 fs/inode.c:1758
ext4_orphan_cleanup fs/ext4/super.c:3298 [inline]
ext4_fill_super+0x8c57/0xba40 fs/ext4/super.c:5300
mount_bdev+0x355/0x410 fs/super.c:1446
legacy_get_tree+0xfe/0x220 fs/fs_context.c:611
vfs_get_tree+0x8d/0x2f0 fs/super.c:1576
do_new_mount fs/namespace.c:2983 [inline]
path_mount+0x119a/0x1ad0 fs/namespace.c:3316
do_mount+0xfc/0x110 fs/namespace.c:3329
__do_sys_mount fs/namespace.c:3540 [inline]
__se_sys_mount+0x219/0x2e0 fs/namespace.c:3514
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
Memory state around the buggy address:
ffff88807b002f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff88807b002f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff88807b003000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
^
ffff88807b003080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff88807b003100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Above issue happens as ext4_xattr_delete_inode() isn't check xattr
is valid if xattr is in inode.
To solve above issue call xattr_check_inode() check if xattr if valid
in inode. In fact, we can directly verify in ext4_iget_extra_inode(),
so that there is no divergent verification. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Apply the link chain quirk on NEC isoc endpoints
Two clearly different specimens of NEC uPD720200 (one with start/stop
bug, one without) were seen to cause IOMMU faults after some Missed
Service Errors. Faulting address is immediately after a transfer ring
segment and patched dynamic debug messages revealed that the MSE was
received when waiting for a TD near the end of that segment:
[ 1.041954] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ffa08fe0
[ 1.042120] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09000 flags=0x0000]
[ 1.042146] xhci_hcd: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0005 address=0xffa09040 flags=0x0000]
It gets even funnier if the next page is a ring segment accessible to
the HC. Below, it reports MSE in segment at ff1e8000, plows through a
zero-filled page at ff1e9000 and starts reporting events for TRBs in
page at ff1ea000 every microframe, instead of jumping to seg ff1e6000.
[ 7.041671] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0
[ 7.041999] xhci_hcd: Miss service interval error for slot 1 ep 2 expected TD DMA ff1e8fe0
[ 7.042011] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042028] xhci_hcd: All TDs skipped for slot 1 ep 2. Clear skip flag.
[ 7.042134] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042138] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31
[ 7.042144] xhci_hcd: Looking for event-dma 00000000ff1ea040 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.042259] xhci_hcd: WARN: buffer overrun event for slot 1 ep 2 on endpoint
[ 7.042262] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 31
[ 7.042266] xhci_hcd: Looking for event-dma 00000000ff1ea050 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
At some point completion events change from Isoch Buffer Overrun to
Short Packet and the HC finally finds cycle bit mismatch in ff1ec000.
[ 7.098130] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13
[ 7.098132] xhci_hcd: Looking for event-dma 00000000ff1ecc50 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.098254] xhci_hcd: ERROR Transfer event TRB DMA ptr not part of current TD ep_index 2 comp_code 13
[ 7.098256] xhci_hcd: Looking for event-dma 00000000ff1ecc60 trb-start 00000000ff1e6820 trb-end 00000000ff1e6820
[ 7.098379] xhci_hcd: Overrun event on slot 1 ep 2
It's possible that data from the isochronous device were written to
random buffers of pending TDs on other endpoints (either IN or OUT),
other devices or even other HCs in the same IOMMU domain.
Lastly, an error from a different USB device on another HC. Was it
caused by the above? I don't know, but it may have been. The disk
was working without any other issues and generated PCIe traffic to
starve the NEC of upstream BW and trigger those MSEs. The two HCs
shared one x1 slot by means of a commercial "PCIe splitter" board.
[ 7.162604] usb 10-2: reset SuperSpeed USB device number 3 using xhci_hcd
[ 7.178990] sd 9:0:0:0: [sdb] tag#0 UNKNOWN(0x2003) Result: hostbyte=0x07 driverbyte=DRIVER_OK cmd_age=0s
[ 7.179001] sd 9:0:0:0: [sdb] tag#0 CDB: opcode=0x28 28 00 04 02 ae 00 00 02 00 00
[ 7.179004] I/O error, dev sdb, sector 67284480 op 0x0:(READ) flags 0x80700 phys_seg 5 prio class 0
Fortunately, it appears that this ridiculous bug is avoided by setting
the chain bit of Link TRBs on isochronous rings. Other ancient HCs are
known which also expect the bit to be set and they ignore Link TRBs if
it's not. Reportedly, 0.95 spec guaranteed that the bit is set.
The bandwidth-starved NEC HC running a 32KB/uframe UVC endpoint reports
tens of MSEs per second and runs into the bug within seconds. Chaining
Link TRBs allows the same workload to run for many minutes, many times.
No ne
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Acquire kvm->srcu when handling KVM_SET_VCPU_EVENTS
Grab kvm->srcu when processing KVM_SET_VCPU_EVENTS, as KVM will forcibly
leave nested VMX/SVM if SMM mode is being toggled, and leaving nested VMX
reads guest memory.
Note, kvm_vcpu_ioctl_x86_set_vcpu_events() can also be called from KVM_RUN
via sync_regs(), which already holds SRCU. I.e. trying to precisely use
kvm_vcpu_srcu_read_lock() around the problematic SMM code would cause
problems. Acquiring SRCU isn't all that expensive, so for simplicity,
grab it unconditionally for KVM_SET_VCPU_EVENTS.
=============================
WARNING: suspicious RCU usage
6.10.0-rc7-332d2c1d713e-next-vm #552 Not tainted
-----------------------------
include/linux/kvm_host.h:1027 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by repro/1071:
#0: ffff88811e424430 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x7d/0x970 [kvm]
stack backtrace:
CPU: 15 PID: 1071 Comm: repro Not tainted 6.10.0-rc7-332d2c1d713e-next-vm #552
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x13f/0x1a0
kvm_vcpu_gfn_to_memslot+0x168/0x190 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
nested_vmx_load_msr+0x6b/0x1d0 [kvm_intel]
load_vmcs12_host_state+0x432/0xb40 [kvm_intel]
vmx_leave_nested+0x30/0x40 [kvm_intel]
kvm_vcpu_ioctl_x86_set_vcpu_events+0x15d/0x2b0 [kvm]
kvm_arch_vcpu_ioctl+0x1107/0x1750 [kvm]
? mark_held_locks+0x49/0x70
? kvm_vcpu_ioctl+0x7d/0x970 [kvm]
? kvm_vcpu_ioctl+0x497/0x970 [kvm]
kvm_vcpu_ioctl+0x497/0x970 [kvm]
? lock_acquire+0xba/0x2d0
? find_held_lock+0x2b/0x80
? do_user_addr_fault+0x40c/0x6f0
? lock_release+0xb7/0x270
__x64_sys_ioctl+0x82/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7ff11eb1b539
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Fix UAF during logout when accessing the shost ipaddress
Bug report and analysis from Ding Hui.
During iSCSI session logout, if another task accesses the shost ipaddress
attr, we can get a KASAN UAF report like this:
[ 276.942144] BUG: KASAN: use-after-free in _raw_spin_lock_bh+0x78/0xe0
[ 276.942535] Write of size 4 at addr ffff8881053b45b8 by task cat/4088
[ 276.943511] CPU: 2 PID: 4088 Comm: cat Tainted: G E 6.1.0-rc8+ #3
[ 276.943997] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
[ 276.944470] Call Trace:
[ 276.944943] <TASK>
[ 276.945397] dump_stack_lvl+0x34/0x48
[ 276.945887] print_address_description.constprop.0+0x86/0x1e7
[ 276.946421] print_report+0x36/0x4f
[ 276.947358] kasan_report+0xad/0x130
[ 276.948234] kasan_check_range+0x35/0x1c0
[ 276.948674] _raw_spin_lock_bh+0x78/0xe0
[ 276.949989] iscsi_sw_tcp_host_get_param+0xad/0x2e0 [iscsi_tcp]
[ 276.951765] show_host_param_ISCSI_HOST_PARAM_IPADDRESS+0xe9/0x130 [scsi_transport_iscsi]
[ 276.952185] dev_attr_show+0x3f/0x80
[ 276.953005] sysfs_kf_seq_show+0x1fb/0x3e0
[ 276.953401] seq_read_iter+0x402/0x1020
[ 276.954260] vfs_read+0x532/0x7b0
[ 276.955113] ksys_read+0xed/0x1c0
[ 276.955952] do_syscall_64+0x38/0x90
[ 276.956347] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 276.956769] RIP: 0033:0x7f5d3a679222
[ 276.957161] Code: c0 e9 b2 fe ff ff 50 48 8d 3d 32 c0 0b 00 e8 a5 fe 01 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24
[ 276.958009] RSP: 002b:00007ffc864d16a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[ 276.958431] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5d3a679222
[ 276.958857] RDX: 0000000000020000 RSI: 00007f5d3a4fe000 RDI: 0000000000000003
[ 276.959281] RBP: 00007f5d3a4fe000 R08: 00000000ffffffff R09: 0000000000000000
[ 276.959682] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000020000
[ 276.960126] R13: 0000000000000003 R14: 0000000000000000 R15: 0000557a26dada58
[ 276.960536] </TASK>
[ 276.961357] Allocated by task 2209:
[ 276.961756] kasan_save_stack+0x1e/0x40
[ 276.962170] kasan_set_track+0x21/0x30
[ 276.962557] __kasan_kmalloc+0x7e/0x90
[ 276.962923] __kmalloc+0x5b/0x140
[ 276.963308] iscsi_alloc_session+0x28/0x840 [scsi_transport_iscsi]
[ 276.963712] iscsi_session_setup+0xda/0xba0 [libiscsi]
[ 276.964078] iscsi_sw_tcp_session_create+0x1fd/0x330 [iscsi_tcp]
[ 276.964431] iscsi_if_create_session.isra.0+0x50/0x260 [scsi_transport_iscsi]
[ 276.964793] iscsi_if_recv_msg+0xc5a/0x2660 [scsi_transport_iscsi]
[ 276.965153] iscsi_if_rx+0x198/0x4b0 [scsi_transport_iscsi]
[ 276.965546] netlink_unicast+0x4d5/0x7b0
[ 276.965905] netlink_sendmsg+0x78d/0xc30
[ 276.966236] sock_sendmsg+0xe5/0x120
[ 276.966576] ____sys_sendmsg+0x5fe/0x860
[ 276.966923] ___sys_sendmsg+0xe0/0x170
[ 276.967300] __sys_sendmsg+0xc8/0x170
[ 276.967666] do_syscall_64+0x38/0x90
[ 276.968028] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 276.968773] Freed by task 2209:
[ 276.969111] kasan_save_stack+0x1e/0x40
[ 276.969449] kasan_set_track+0x21/0x30
[ 276.969789] kasan_save_free_info+0x2a/0x50
[ 276.970146] __kasan_slab_free+0x106/0x190
[ 276.970470] __kmem_cache_free+0x133/0x270
[ 276.970816] device_release+0x98/0x210
[ 276.971145] kobject_cleanup+0x101/0x360
[ 276.971462] iscsi_session_teardown+0x3fb/0x530 [libiscsi]
[ 276.971775] iscsi_sw_tcp_session_destroy+0xd8/0x130 [iscsi_tcp]
[ 276.972143] iscsi_if_recv_msg+0x1bf1/0x2660 [scsi_transport_iscsi]
[ 276.972485] iscsi_if_rx+0x198/0x4b0 [scsi_transport_iscsi]
[ 276.972808] netlink_unicast+0x4d5/0x7b0
[ 276.973201] netlink_sendmsg+0x78d/0xc30
[ 276.973544] sock_sendmsg+0xe5/0x120
[ 276.973864] ____sys_sendmsg+0x5fe/0x860
[ 276.974248] ___sys_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc-bus: fix KASAN use-after-free in fsl_mc_bus_remove()
In fsl_mc_bus_remove(), mc->root_mc_bus_dev->mc_io is passed to
fsl_destroy_mc_io(). However, mc->root_mc_bus_dev is already freed in
fsl_mc_device_remove(). Then reference to mc->root_mc_bus_dev->mc_io
triggers KASAN use-after-free. To avoid the use-after-free, keep the
reference to mc->root_mc_bus_dev->mc_io in a local variable and pass to
fsl_destroy_mc_io().
This patch needs rework to apply to kernels older than v5.15. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-throttle: Set BIO_THROTTLED when bio has been throttled
1.In current process, all bio will set the BIO_THROTTLED flag
after __blk_throtl_bio().
2.If bio needs to be throttled, it will start the timer and
stop submit bio directly. Bio will submit in
blk_throtl_dispatch_work_fn() when the timer expires.But in
the current process, if bio is throttled. The BIO_THROTTLED
will be set to bio after timer start. If the bio has been
completed, it may cause use-after-free blow.
BUG: KASAN: use-after-free in blk_throtl_bio+0x12f0/0x2c70
Read of size 2 at addr ffff88801b8902d4 by task fio/26380
dump_stack+0x9b/0xce
print_address_description.constprop.6+0x3e/0x60
kasan_report.cold.9+0x22/0x3a
blk_throtl_bio+0x12f0/0x2c70
submit_bio_checks+0x701/0x1550
submit_bio_noacct+0x83/0xc80
submit_bio+0xa7/0x330
mpage_readahead+0x380/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Allocated by task 26380:
kasan_save_stack+0x19/0x40
__kasan_kmalloc.constprop.2+0xc1/0xd0
kmem_cache_alloc+0x146/0x440
mempool_alloc+0x125/0x2f0
bio_alloc_bioset+0x353/0x590
mpage_alloc+0x3b/0x240
do_mpage_readpage+0xddf/0x1ef0
mpage_readahead+0x264/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 0:
kasan_save_stack+0x19/0x40
kasan_set_track+0x1c/0x30
kasan_set_free_info+0x1b/0x30
__kasan_slab_free+0x111/0x160
kmem_cache_free+0x94/0x460
mempool_free+0xd6/0x320
bio_free+0xe0/0x130
bio_put+0xab/0xe0
bio_endio+0x3a6/0x5d0
blk_update_request+0x590/0x1370
scsi_end_request+0x7d/0x400
scsi_io_completion+0x1aa/0xe50
scsi_softirq_done+0x11b/0x240
blk_mq_complete_request+0xd4/0x120
scsi_mq_done+0xf0/0x200
virtscsi_vq_done+0xbc/0x150
vring_interrupt+0x179/0x390
__handle_irq_event_percpu+0xf7/0x490
handle_irq_event_percpu+0x7b/0x160
handle_irq_event+0xcc/0x170
handle_edge_irq+0x215/0xb20
common_interrupt+0x60/0x120
asm_common_interrupt+0x1e/0x40
Fix this by move BIO_THROTTLED set into the queue_lock. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: core: use sysfs_emit() instead of sprintf()
sprintf() (still used in the MMC core for the sysfs output) is vulnerable
to the buffer overflow. Use the new-fangled sysfs_emit() instead.
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not clean up repair bio if submit fails
The submit helper will always run bio_endio() on the bio if it fails to
submit, so cleaning up the bio just leads to a variety of use-after-free
and NULL pointer dereference bugs because we race with the endio
function that is cleaning up the bio. Instead just return BLK_STS_OK as
the repair function has to continue to process the rest of the pages,
and the endio for the repair bio will do the appropriate cleanup for the
page that it was given. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid field-overflowing memcpy()
In preparation for FORTIFY_SOURCE performing compile-time and run-time
field bounds checking for memcpy(), memmove(), and memset(), avoid
intentionally writing across neighboring fields.
Use flexible arrays instead of zero-element arrays (which look like they
are always overflowing) and split the cross-field memcpy() into two halves
that can be appropriately bounds-checked by the compiler.
We were doing:
#define ETH_HLEN 14
#define VLAN_HLEN 4
...
#define MLX5E_XDP_MIN_INLINE (ETH_HLEN + VLAN_HLEN)
...
struct mlx5e_tx_wqe *wqe = mlx5_wq_cyc_get_wqe(wq, pi);
...
struct mlx5_wqe_eth_seg *eseg = &wqe->eth;
struct mlx5_wqe_data_seg *dseg = wqe->data;
...
memcpy(eseg->inline_hdr.start, xdptxd->data, MLX5E_XDP_MIN_INLINE);
target is wqe->eth.inline_hdr.start (which the compiler sees as being
2 bytes in size), but copying 18, intending to write across start
(really vlan_tci, 2 bytes). The remaining 16 bytes get written into
wqe->data[0], covering byte_count (4 bytes), lkey (4 bytes), and addr
(8 bytes).
struct mlx5e_tx_wqe {
struct mlx5_wqe_ctrl_seg ctrl; /* 0 16 */
struct mlx5_wqe_eth_seg eth; /* 16 16 */
struct mlx5_wqe_data_seg data[]; /* 32 0 */
/* size: 32, cachelines: 1, members: 3 */
/* last cacheline: 32 bytes */
};
struct mlx5_wqe_eth_seg {
u8 swp_outer_l4_offset; /* 0 1 */
u8 swp_outer_l3_offset; /* 1 1 */
u8 swp_inner_l4_offset; /* 2 1 */
u8 swp_inner_l3_offset; /* 3 1 */
u8 cs_flags; /* 4 1 */
u8 swp_flags; /* 5 1 */
__be16 mss; /* 6 2 */
__be32 flow_table_metadata; /* 8 4 */
union {
struct {
__be16 sz; /* 12 2 */
u8 start[2]; /* 14 2 */
} inline_hdr; /* 12 4 */
struct {
__be16 type; /* 12 2 */
__be16 vlan_tci; /* 14 2 */
} insert; /* 12 4 */
__be32 trailer; /* 12 4 */
}; /* 12 4 */
/* size: 16, cachelines: 1, members: 9 */
/* last cacheline: 16 bytes */
};
struct mlx5_wqe_data_seg {
__be32 byte_count; /* 0 4 */
__be32 lkey; /* 4 4 */
__be64 addr; /* 8 8 */
/* size: 16, cachelines: 1, members: 3 */
/* last cacheline: 16 bytes */
};
So, split the memcpy() so the compiler can reason about the buffer
sizes.
"pahole" shows no size nor member offset changes to struct mlx5e_tx_wqe
nor struct mlx5e_umr_wqe. "objdump -d" shows no meaningful object
code changes (i.e. only source line number induced differences and
optimizations). |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add max vqp attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa max vqp attr to avoid
such bugs. |