| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: ov2740: Fix memleak in ov2740_init_controls()
There is a kmemleak when testing the media/i2c/ov2740.c with bpf mock
device:
unreferenced object 0xffff8881090e19e0 (size 16):
comm "51-i2c-ov2740", pid 278, jiffies 4294781584 (age 23.613s)
hex dump (first 16 bytes):
00 f3 7c 0b 81 88 ff ff 80 75 6a 09 81 88 ff ff ..|......uj.....
backtrace:
[<000000004e9fad8f>] __kmalloc_node+0x44/0x1b0
[<0000000039c802f4>] kvmalloc_node+0x34/0x180
[<000000009b8b5c63>] v4l2_ctrl_handler_init_class+0x11d/0x180
[videodev]
[<0000000038644056>] ov2740_probe+0x37d/0x84f [ov2740]
[<0000000092489f59>] i2c_device_probe+0x28d/0x680
[<000000001038babe>] really_probe+0x17c/0x3f0
[<0000000098c7af1c>] __driver_probe_device+0xe3/0x170
[<00000000e1b3dc24>] device_driver_attach+0x34/0x80
[<000000005a04a34d>] bind_store+0x10b/0x1a0
[<00000000ce25d4f2>] drv_attr_store+0x49/0x70
[<000000007d9f4e9a>] sysfs_kf_write+0x8c/0xb0
[<00000000be6cff0f>] kernfs_fop_write_iter+0x216/0x2e0
[<0000000031ddb40a>] vfs_write+0x658/0x810
[<0000000041beecdd>] ksys_write+0xd6/0x1b0
[<0000000023755840>] do_syscall_64+0x38/0x90
[<00000000b2cc2da2>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
ov2740_init_controls() won't clean all the allocated resources in fail
path, which may causes the memleaks. Add v4l2_ctrl_handler_free() to
prevent memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
kernel/fail_function: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: chipidea: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
caif: fix memory leak in cfctrl_linkup_request()
When linktype is unknown or kzalloc failed in cfctrl_linkup_request(),
pkt is not released. Add release process to error path. |
| In the Linux kernel, the following vulnerability has been resolved:
recordmcount: Fix memory leaks in the uwrite function
Common realloc mistake: 'file_append' nulled but not freed upon failure |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Fix SKB corruption in REO destination ring
While running traffics for a long time, randomly an RX descriptor
filled with value "0" from REO destination ring is received.
This descriptor which is invalid causes the wrong SKB (SKB stored in
the IDR lookup with buffer id "0") to be fetched which in turn
causes SKB memory corruption issue and the same leads to crash
after some time.
Changed the start id for idr allocation to "1" and the buffer id "0"
is reserved for error validation. Introduced Sanity check to validate
the descriptor, before processing the SKB.
Crash Signature :
Unable to handle kernel paging request at virtual address 3f004900
PC points to "b15_dma_inv_range+0x30/0x50"
LR points to "dma_cache_maint_page+0x8c/0x128".
The Backtrace obtained is as follows:
[<8031716c>] (b15_dma_inv_range) from [<80313a4c>] (dma_cache_maint_page+0x8c/0x128)
[<80313a4c>] (dma_cache_maint_page) from [<80313b90>] (__dma_page_dev_to_cpu+0x28/0xcc)
[<80313b90>] (__dma_page_dev_to_cpu) from [<7fb5dd68>] (ath11k_dp_process_rx+0x1e8/0x4a4 [ath11k])
[<7fb5dd68>] (ath11k_dp_process_rx [ath11k]) from [<7fb53c20>] (ath11k_dp_service_srng+0xb0/0x2ac [ath11k])
[<7fb53c20>] (ath11k_dp_service_srng [ath11k]) from [<7f67bba4>] (ath11k_pci_ext_grp_napi_poll+0x1c/0x78 [ath11k_pci])
[<7f67bba4>] (ath11k_pci_ext_grp_napi_poll [ath11k_pci]) from [<807d5cf4>] (__napi_poll+0x28/0xb8)
[<807d5cf4>] (__napi_poll) from [<807d5f28>] (net_rx_action+0xf0/0x280)
[<807d5f28>] (net_rx_action) from [<80302148>] (__do_softirq+0xd0/0x280)
[<80302148>] (__do_softirq) from [<80320408>] (irq_exit+0x74/0xd4)
[<80320408>] (irq_exit) from [<803638a4>] (__handle_domain_irq+0x90/0xb4)
[<803638a4>] (__handle_domain_irq) from [<805bedec>] (gic_handle_irq+0x58/0x90)
[<805bedec>] (gic_handle_irq) from [<80301a78>] (__irq_svc+0x58/0x8c)
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix net_dev_start_xmit trace event vs skb_transport_offset()
After blamed commit, we must be more careful about using
skb_transport_offset(), as reminded us by syzbot:
WARNING: CPU: 0 PID: 10 at include/linux/skbuff.h:2868 skb_transport_offset include/linux/skbuff.h:2977 [inline]
WARNING: CPU: 0 PID: 10 at include/linux/skbuff.h:2868 perf_trace_net_dev_start_xmit+0x89a/0xce0 include/trace/events/net.h:14
Modules linked in:
CPU: 0 PID: 10 Comm: kworker/u4:1 Not tainted 6.1.30-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet
RIP: 0010:skb_transport_header include/linux/skbuff.h:2868 [inline]
RIP: 0010:skb_transport_offset include/linux/skbuff.h:2977 [inline]
RIP: 0010:perf_trace_net_dev_start_xmit+0x89a/0xce0 include/trace/events/net.h:14
Code: 8b 04 25 28 00 00 00 48 3b 84 24 c0 00 00 00 0f 85 4e 04 00 00 48 8d 65 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc e8 56 22 01 fd <0f> 0b e9 f6 fc ff ff 89 f9 80 e1 07 80 c1 03 38 c1 0f 8c 86 f9 ff
RSP: 0018:ffffc900002bf700 EFLAGS: 00010293
RAX: ffffffff8485d8ca RBX: 000000000000ffff RCX: ffff888100914280
RDX: 0000000000000000 RSI: 000000000000ffff RDI: 000000000000ffff
RBP: ffffc900002bf818 R08: ffffffff8485d5b6 R09: fffffbfff0f8fb5e
R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff110217d8f67
R13: ffff88810bec7b3a R14: dffffc0000000000 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ffff8881f6a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f96cf6d52f0 CR3: 000000012224c000 CR4: 0000000000350ef0
Call Trace:
<TASK>
[<ffffffff84715e35>] trace_net_dev_start_xmit include/trace/events/net.h:14 [inline]
[<ffffffff84715e35>] xmit_one net/core/dev.c:3643 [inline]
[<ffffffff84715e35>] dev_hard_start_xmit+0x705/0x980 net/core/dev.c:3660
[<ffffffff8471a232>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324
[<ffffffff85416493>] dev_queue_xmit include/linux/netdevice.h:3030 [inline]
[<ffffffff85416493>] batadv_send_skb_packet+0x3f3/0x680 net/batman-adv/send.c:108
[<ffffffff85416744>] batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127
[<ffffffff853bc52a>] batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline]
[<ffffffff853bc52a>] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline]
[<ffffffff853bc52a>] batadv_iv_send_outstanding_bat_ogm_packet+0x69a/0x840 net/batman-adv/bat_iv_ogm.c:1701
[<ffffffff8151023c>] process_one_work+0x8ac/0x1170 kernel/workqueue.c:2289
[<ffffffff81511938>] worker_thread+0xaa8/0x12d0 kernel/workqueue.c:2436 |
| In the Linux kernel, the following vulnerability has been resolved:
net: microchip: vcap api: Fix possible memory leak for vcap_dup_rule()
Inject fault When select CONFIG_VCAP_KUNIT_TEST, the below memory leak
occurs. If kzalloc() for duprule succeeds, but the following
kmemdup() fails, the duprule, ckf and caf memory will be leaked. So kfree
them in the error path.
unreferenced object 0xffff122744c50600 (size 192):
comm "kunit_try_catch", pid 346, jiffies 4294896122 (age 911.812s)
hex dump (first 32 bytes):
10 27 00 00 04 00 00 00 1e 00 00 00 2c 01 00 00 .'..........,...
00 00 00 00 00 00 00 00 18 06 c5 44 27 12 ff ff ...........D'...
backtrace:
[<00000000394b0db8>] __kmem_cache_alloc_node+0x274/0x2f8
[<0000000001bedc67>] kmalloc_trace+0x38/0x88
[<00000000b0612f98>] vcap_dup_rule+0x50/0x460
[<000000005d2d3aca>] vcap_add_rule+0x8cc/0x1038
[<00000000eef9d0f8>] test_vcap_xn_rule_creator.constprop.0.isra.0+0x238/0x494
[<00000000cbda607b>] vcap_api_rule_remove_in_front_test+0x1ac/0x698
[<00000000c8766299>] kunit_try_run_case+0xe0/0x20c
[<00000000c4fe9186>] kunit_generic_run_threadfn_adapter+0x50/0x94
[<00000000f6864acf>] kthread+0x2e8/0x374
[<0000000022e639b3>] ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
media: hi846: Fix memleak in hi846_init_controls()
hi846_init_controls doesn't clean the allocated ctrl_hdlr
in case there is a failure, which causes memleak. Add
v4l2_ctrl_handler_free to free the resource properly. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix leak of 'r10bio->remaining' for recovery
raid10_sync_request() will add 'r10bio->remaining' for both rdev and
replacement rdev. However, if the read io fails, recovery_request_write()
returns without issuing the write io, in this case, end_sync_request()
is only called once and 'remaining' is leaked, cause an io hang.
Fix the problem by decreasing 'remaining' according to if 'bio' and
'repl_bio' is valid. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: fix memory leak of se_io context in nfc_genl_se_io
The callback context for sending/receiving APDUs to/from the selected
secure element is allocated inside nfc_genl_se_io and supposed to be
eventually freed in se_io_cb callback function. However, there are several
error paths where the bwi_timer is not charged to call se_io_cb later, and
the cb_context is leaked.
The patch proposes to free the cb_context explicitly on those error paths.
At the moment we can't simply check 'dev->ops->se_io()' return value as it
may be negative in both cases: when the timer was charged and was not. |
| In the Linux kernel, the following vulnerability has been resolved:
samples/bpf: Fix fout leak in hbm's run_bpf_prog
Fix fout being fopen'ed but then not subsequently fclose'd. In the affected
branch, fout is otherwise going out of scope. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_modeset_probe
When a new mode is set to modeset->mode, the previous mode should be freed.
This fixes the following kmemleak report:
drm_mode_duplicate+0x45/0x220 [drm]
drm_client_modeset_probe+0x944/0xf50 [drm]
__drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
drm_client_register+0x169/0x240 [drm]
ast_pci_probe+0x142/0x190 [ast]
local_pci_probe+0xdc/0x180
work_for_cpu_fn+0x4e/0xa0
process_one_work+0x8b7/0x1540
worker_thread+0x70a/0xed0
kthread+0x29f/0x340
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
misc: vmw_balloon: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memory leak in ubifs_sysfs_init()
When insmod ubifs.ko, a kmemleak reported as below:
unreferenced object 0xffff88817fb1a780 (size 8):
comm "insmod", pid 25265, jiffies 4295239702 (age 100.130s)
hex dump (first 8 bytes):
75 62 69 66 73 00 ff ff ubifs...
backtrace:
[<ffffffff81b3fc4c>] slab_post_alloc_hook+0x9c/0x3c0
[<ffffffff81b44bf3>] __kmalloc_track_caller+0x183/0x410
[<ffffffff8198d3da>] kstrdup+0x3a/0x80
[<ffffffff8198d486>] kstrdup_const+0x66/0x80
[<ffffffff83989325>] kvasprintf_const+0x155/0x190
[<ffffffff83bf55bb>] kobject_set_name_vargs+0x5b/0x150
[<ffffffff83bf576b>] kobject_set_name+0xbb/0xf0
[<ffffffff8100204c>] do_one_initcall+0x14c/0x5a0
[<ffffffff8157e380>] do_init_module+0x1f0/0x660
[<ffffffff815857be>] load_module+0x6d7e/0x7590
[<ffffffff8158644f>] __do_sys_finit_module+0x19f/0x230
[<ffffffff815866b3>] __x64_sys_finit_module+0x73/0xb0
[<ffffffff88c98e85>] do_syscall_64+0x35/0x80
[<ffffffff88e00087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
When kset_register() failed, we should call kset_put to cleanup it. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Free memory for tmpfile name
When opening a ubifs tmpfile on an encrypted directory, function
fscrypt_setup_filename allocates memory for the name that is to be
stored in the directory entry, but after the name has been copied to the
directory entry inode, the memory is not freed.
When running kmemleak on it we see that it is registered as a leak. The
report below is triggered by a simple program 'tmpfile' just opening a
tmpfile:
unreferenced object 0xffff88810178f380 (size 32):
comm "tmpfile", pid 509, jiffies 4294934744 (age 1524.742s)
backtrace:
__kmem_cache_alloc_node
__kmalloc
fscrypt_setup_filename
ubifs_tmpfile
vfs_tmpfile
path_openat
Free this memory after it has been copied to the inode. |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix unreferenced object reported by kmemleak in ubi_resize_volume()
There is a memory leaks problem reported by kmemleak:
unreferenced object 0xffff888102007a00 (size 128):
comm "ubirsvol", pid 32090, jiffies 4298464136 (age 2361.231s)
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace:
[<ffffffff8176cecd>] __kmalloc+0x4d/0x150
[<ffffffffa02a9a36>] ubi_eba_create_table+0x76/0x170 [ubi]
[<ffffffffa029764e>] ubi_resize_volume+0x1be/0xbc0 [ubi]
[<ffffffffa02a3321>] ubi_cdev_ioctl+0x701/0x1850 [ubi]
[<ffffffff81975d2d>] __x64_sys_ioctl+0x11d/0x170
[<ffffffff83c142a5>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This is due to a mismatch between create and destroy interfaces, and
in detail that "new_eba_tbl" created by ubi_eba_create_table() but
destroyed by kfree(), while will causing "new_eba_tbl->entries" not
freed.
Fix it by replacing kfree(new_eba_tbl) with
ubi_eba_destroy_table(new_eba_tbl) |
| In the Linux kernel, the following vulnerability has been resolved:
driver: soc: xilinx: fix memory leak in xlnx_add_cb_for_notify_event()
The kfree() should be called when memory fails to be allocated for
cb_data in xlnx_add_cb_for_notify_event(), otherwise there will be
a memory leak, so add kfree() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: acpi: Fix possible memory leak of ffh_ctxt
Allocated 'ffh_ctxt' memory leak is possible if the SMCCC version
and conduit checks fail and -EOPNOTSUPP is returned without freeing the
allocated memory.
Fix the same by moving the allocation after the SMCCC version and
conduit checks. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imxrt1050: fix memory leak in imxrt1050_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically
handle the unused ioremap region. If any error occurs, regions allocated by
kzalloc() will leak, but using devm_kzalloc() instead will automatically
free the memory using devm_kfree().
Also, fix error handling of hws by adding unregister_hws label, which
unregisters remaining hws when iomap failed. |