| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Heap buffer overflow in UI in Google Chrome on Android prior to 86.0.4240.185 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page. |
| Windows Scripting Languages Remote Code Execution Vulnerability |
| In GnuPG before 2.4.9, armor_filter in g10/armor.c has two increments of an index variable where one is intended, leading to an out-of-bounds write for crafted input. (For ExtendedLTS, 2.2.51 and later are fixed versions.) |
| In the Linux kernel, the following vulnerability has been resolved:
efi: stmm: Fix incorrect buffer allocation method
The communication buffer allocated by setup_mm_hdr() is later on passed
to tee_shm_register_kernel_buf(). The latter expects those buffers to be
contiguous pages, but setup_mm_hdr() just uses kmalloc(). That can cause
various corruptions or BUGs, specifically since commit 9aec2fb0fd5e
("slab: allocate frozen pages"), though it was broken before as well.
Fix this by using alloc_pages_exact() instead of kmalloc(). |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Avoid undefined behavior from stopping/starting inactive events
Calling pmu->start()/stop() on perf events in PERF_EVENT_STATE_OFF can
leave event->hw.idx at -1. When PMU drivers later attempt to use this
negative index as a shift exponent in bitwise operations, it leads to UBSAN
shift-out-of-bounds reports.
The issue is a logical flaw in how event groups handle throttling when some
members are intentionally disabled. Based on the analysis and the
reproducer provided by Mark Rutland (this issue on both arm64 and x86-64).
The scenario unfolds as follows:
1. A group leader event is configured with a very aggressive sampling
period (e.g., sample_period = 1). This causes frequent interrupts and
triggers the throttling mechanism.
2. A child event in the same group is created in a disabled state
(.disabled = 1). This event remains in PERF_EVENT_STATE_OFF.
Since it hasn't been scheduled onto the PMU, its event->hw.idx remains
initialized at -1.
3. When throttling occurs, perf_event_throttle_group() and later
perf_event_unthrottle_group() iterate through all siblings, including
the disabled child event.
4. perf_event_throttle()/unthrottle() are called on this inactive child
event, which then call event->pmu->start()/stop().
5. The PMU driver receives the event with hw.idx == -1 and attempts to
use it as a shift exponent. e.g., in macros like PMCNTENSET(idx),
leading to the UBSAN report.
The throttling mechanism attempts to start/stop events that are not
actively scheduled on the hardware.
Move the state check into perf_event_throttle()/perf_event_unthrottle() so
that inactive events are skipped entirely. This ensures only active events
with a valid hw.idx are processed, preventing undefined behavior and
silencing UBSAN warnings. The corrected check ensures true before
proceeding with PMU operations.
The problem can be reproduced with the syzkaller reproducer: |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-thc-hid: intel-thc: Fix incorrect pointer arithmetic in I2C regs save
Improper use of secondary pointer (&dev->i2c_subip_regs) caused
kernel crash and out-of-bounds error:
BUG: KASAN: slab-out-of-bounds in _regmap_bulk_read+0x449/0x510
Write of size 4 at addr ffff888136005dc0 by task kworker/u33:5/5107
CPU: 3 UID: 0 PID: 5107 Comm: kworker/u33:5 Not tainted 6.16.0+ #3 PREEMPT(voluntary)
Workqueue: async async_run_entry_fn
Call Trace:
<TASK>
dump_stack_lvl+0x76/0xa0
print_report+0xd1/0x660
? __pfx__raw_spin_lock_irqsave+0x10/0x10
? kasan_complete_mode_report_info+0x26/0x200
kasan_report+0xe1/0x120
? _regmap_bulk_read+0x449/0x510
? _regmap_bulk_read+0x449/0x510
__asan_report_store4_noabort+0x17/0x30
_regmap_bulk_read+0x449/0x510
? __pfx__regmap_bulk_read+0x10/0x10
regmap_bulk_read+0x270/0x3d0
pio_complete+0x1ee/0x2c0 [intel_thc]
? __pfx_pio_complete+0x10/0x10 [intel_thc]
? __pfx_pio_wait+0x10/0x10 [intel_thc]
? regmap_update_bits_base+0x13b/0x1f0
thc_i2c_subip_pio_read+0x117/0x270 [intel_thc]
thc_i2c_subip_regs_save+0xc2/0x140 [intel_thc]
? __pfx_thc_i2c_subip_regs_save+0x10/0x10 [intel_thc]
[...]
The buggy address belongs to the object at ffff888136005d00
which belongs to the cache kmalloc-rnd-12-192 of size 192
The buggy address is located 0 bytes to the right of
allocated 192-byte region [ffff888136005d00, ffff888136005dc0)
Replaced with direct array indexing (&dev->i2c_subip_regs[i]) to ensure
safe memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix memory corruption when FW resources change during ifdown
bnxt_set_dflt_rings() assumes that it is always called before any TC has
been created. So it doesn't take bp->num_tc into account and assumes
that it is always 0 or 1.
In the FW resource or capability change scenario, the FW will return
flags in bnxt_hwrm_if_change() that will cause the driver to
reinitialize and call bnxt_cancel_reservations(). This will lead to
bnxt_init_dflt_ring_mode() calling bnxt_set_dflt_rings() and bp->num_tc
may be greater than 1. This will cause bp->tx_ring[] to be sized too
small and cause memory corruption in bnxt_alloc_cp_rings().
Fix it by properly scaling the TX rings by bp->num_tc in the code
paths mentioned above. Add 2 helper functions to determine
bp->tx_nr_rings and bp->tx_nr_rings_per_tc. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-thc-hid: intel-quicki2c: Fix ACPI dsd ICRS/ISUB length
The QuickI2C ACPI _DSD methods return ICRS and ISUB data with a
trailing byte, making the actual length is one more byte than the
structs defined.
It caused stack-out-of-bounds and kernel crash:
kernel: BUG: KASAN: stack-out-of-bounds in quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: Write of size 12 at addr ffff888106d1f900 by task kworker/u33:2/75
kernel:
kernel: CPU: 3 UID: 0 PID: 75 Comm: kworker/u33:2 Not tainted 6.16.0+ #3 PREEMPT(voluntary)
kernel: Workqueue: async async_run_entry_fn
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x76/0xa0
kernel: print_report+0xd1/0x660
kernel: ? __pfx__raw_spin_lock_irqsave+0x10/0x10
kernel: ? __kasan_slab_free+0x5d/0x80
kernel: ? kasan_addr_to_slab+0xd/0xb0
kernel: kasan_report+0xe1/0x120
kernel: ? quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: ? quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: kasan_check_range+0x11c/0x200
kernel: __asan_memcpy+0x3b/0x80
kernel: quicki2c_acpi_get_dsd_property.constprop.0+0x111/0x1b0 [intel_quicki2c]
kernel: ? __pfx_quicki2c_acpi_get_dsd_property.constprop.0+0x10/0x10 [intel_quicki2c]
kernel: quicki2c_get_acpi_resources+0x237/0x730 [intel_quicki2c]
[...]
kernel: </TASK>
kernel:
kernel: The buggy address belongs to stack of task kworker/u33:2/75
kernel: and is located at offset 48 in frame:
kernel: quicki2c_get_acpi_resources+0x0/0x730 [intel_quicki2c]
kernel:
kernel: This frame has 3 objects:
kernel: [32, 36) 'hid_desc_addr'
kernel: [48, 59) 'i2c_param'
kernel: [80, 224) 'i2c_config'
ACPI DSD methods return:
\_SB.PC00.THC0.ICRS Buffer 000000003fdc947b 001 Len 0C = 0A 00 80 1A 06 00 00 00 00 00 00 00
\_SB.PC00.THC0.ISUB Buffer 00000000f2fcbdc4 001 Len 91 = 00 00 00 00 00 00 00 00 00 00 00 00
Adding reserved padding to quicki2c_subip_acpi_parameter/config. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: fix a potential overflow in sctp_ifwdtsn_skip
Currently, when traversing ifwdtsn skips with _sctp_walk_ifwdtsn, it only
checks the pos against the end of the chunk. However, the data left for
the last pos may be < sizeof(struct sctp_ifwdtsn_skip), and dereference
it as struct sctp_ifwdtsn_skip may cause coverflow.
This patch fixes it by checking the pos against "the end of the chunk -
sizeof(struct sctp_ifwdtsn_skip)" in sctp_ifwdtsn_skip, similar to
sctp_fwdtsn_skip. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Check start of empty przs during init
After commit 30696378f68a ("pstore/ram: Do not treat empty buffers as
valid"), initialization would assume a prz was valid after seeing that
the buffer_size is zero (regardless of the buffer start position). This
unchecked start value means it could be outside the bounds of the buffer,
leading to future access panics when written to:
sysdump_panic_event+0x3b4/0x5b8
atomic_notifier_call_chain+0x54/0x90
panic+0x1c8/0x42c
die+0x29c/0x2a8
die_kernel_fault+0x68/0x78
__do_kernel_fault+0x1c4/0x1e0
do_bad_area+0x40/0x100
do_translation_fault+0x68/0x80
do_mem_abort+0x68/0xf8
el1_da+0x1c/0xc0
__raw_writeb+0x38/0x174
__memcpy_toio+0x40/0xac
persistent_ram_update+0x44/0x12c
persistent_ram_write+0x1a8/0x1b8
ramoops_pstore_write+0x198/0x1e8
pstore_console_write+0x94/0xe0
...
To avoid this, also check if the prz start is 0 during the initialization
phase. If not, the next prz sanity check case will discover it (start >
size) and zap the buffer back to a sane state.
[kees: update commit log with backtrace and clarifications] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix issues in mpi3mr_get_all_tgt_info()
The function mpi3mr_get_all_tgt_info() has four issues:
1) It calculates valid entry length in alltgt_info assuming the header part
of the struct mpi3mr_device_map_info would equal to sizeof(u32). The
correct size is sizeof(u64).
2) When it calculates the valid entry length kern_entrylen, it excludes one
entry by subtracting 1 from num_devices.
3) It copies num_device by calling memcpy(). Substitution is enough.
4) It does not specify the calculated length to sg_copy_from_buffer().
Instead, it specifies the payload length which is larger than the
alltgt_info size. It causes "BUG: KASAN: slab-out-of-bounds".
Fix the issues by using the correct header size, removing the subtraction
from num_devices, replacing the memcpy() with substitution and specifying
the correct length to sg_copy_from_buffer(). |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: mt8183: Add back SSPM related clocks
This reverts commit 860690a93ef23b567f781c1b631623e27190f101.
On the MT8183, the SSPM related clocks were removed claiming a lack of
usage. This however causes some issues when the driver was converted to
the new simple-probe mechanism. This mechanism allocates enough space
for all the clocks defined in the clock driver, not the highest index
in the DT binding. This leads to out-of-bound writes if their are holes
in the DT binding or the driver (due to deprecated or unimplemented
clocks). These errors can go unnoticed and cause memory corruption,
leading to crashes in unrelated areas, or nothing at all. KASAN will
detect them.
Add the SSPM related clocks back to the MT8183 clock driver to fully
implement the DT binding. The SSPM clocks are for the power management
co-processor, and should never be turned off. They are marked as such. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dsi: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502668/ |
| A vulnerability in the DHCP option 82 encapsulation functionality of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability exists because the affected software performs incomplete input validation of option 82 information that it receives in DHCP Version 4 (DHCPv4) packets from DHCP relay agents. An attacker could exploit this vulnerability by sending a crafted DHCPv4 packet to an affected device. A successful exploit could allow the attacker to cause a heap overflow condition on the affected device, which will cause the device to reload and result in a DoS condition. Cisco Bug IDs: CSCvg62730. |
| A vulnerability in the Smart Install feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition, or to execute arbitrary code on an affected device. The vulnerability is due to improper validation of packet data. An attacker could exploit this vulnerability by sending a crafted Smart Install message to an affected device on TCP port 4786. A successful exploit could allow the attacker to cause a buffer overflow on the affected device, which could have the following impacts: Triggering a reload of the device, Allowing the attacker to execute arbitrary code on the device, Causing an indefinite loop on the affected device that triggers a watchdog crash. Cisco Bug IDs: CSCvg76186. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below are prone to have Undefined Behavior (UB) and Out of Memory errors. This issue is fixed in version 2.3.1.2. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Versions prior to 2.3.1.2 have a heap-buffer-overflow vulnerability in `SIccCalcOp::Describe()` at `IccProfLib/IccMpeCalc.cpp`. This vulnerability affects users of the iccDEV library who process ICC color profiles. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Versions prior to 2.3.1.2 have a heap-buffer-overflow vulnerability in `CIccProfileXml::ParseBasic()` at `IccXML/IccLibXML/IccProfileXml.cpp`. This vulnerability affects users of the iccDEV library who process ICC color profiles. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| An improper boundary check in DSP driver prior to SMR Mar-2021 Release 1 allows out of bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only. |