| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/imagination: Free pvr_vm_gpuva after unlink
This caused a measurable memory leak. Although the individual
allocations are small, the leaks occurs in a high-usage codepath
(remapping or unmapping device memory) so they add up quickly. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix opregion leak
Being part o the display, ideally the setup and cleanup would be done by
display itself. However this is a bigger refactor that needs to be done
on both i915 and xe. For now, just fix the leak:
unreferenced object 0xffff8881a0300008 (size 192):
comm "modprobe", pid 4354, jiffies 4295647021
hex dump (first 32 bytes):
00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............
18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................
backtrace (crc 99260e31):
[<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80
[<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0
[<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe]
[<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe]
[<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe]
[<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe]
[<ffffffff81af6be8>] local_pci_probe+0x48/0xb0
[<ffffffff81af8778>] pci_device_probe+0xc8/0x280
[<ffffffff81d09048>] really_probe+0xf8/0x390
[<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170
[<ffffffff81d09503>] driver_probe_device+0x23/0xb0
[<ffffffff81d097b7>] __driver_attach+0xc7/0x190
[<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0
[<ffffffff81d0851e>] driver_attach+0x1e/0x30
[<ffffffff81d07ac7>] bus_add_driver+0x117/0x250
(cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix missing workqueue destroy in xe_gt_pagefault
On driver reload we never free up the memory for the pagefault and
access counter workqueues. Add those destroy calls here.
(cherry picked from commit 7586fc52b14e0b8edd0d1f8a434e0de2078b7b2b) |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leaks and crashes while performing a soft reset
The second tagged commit introduced a UAF, as it removed restoring
q_vector->vport pointers after reinitializating the structures.
This is due to that all queue allocation functions are performed here
with the new temporary vport structure and those functions rewrite
the backpointers to the vport. Then, this new struct is freed and
the pointers start leading to nowhere.
But generally speaking, the current logic is very fragile. It claims
to be more reliable when the system is low on memory, but in fact, it
consumes two times more memory as at the moment of running this
function, there are two vports allocated with their queues and vectors.
Moreover, it claims to prevent the driver from running into "bad state",
but in fact, any error during the rebuild leaves the old vport in the
partially allocated state.
Finally, if the interface is down when the function is called, it always
allocates a new queue set, but when the user decides to enable the
interface later on, vport_open() allocates them once again, IOW there's
a clear memory leak here.
Just don't allocate a new queue set when performing a reset, that solves
crashes and memory leaks. Readd the old queue number and reopen the
interface on rollback - that solves limbo states when the device is left
disabled and/or without HW queues enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: apple: fix device reference counting
Drivers must call nvme_uninit_ctrl after a successful nvme_init_ctrl.
Split the allocation side out to make the error handling boundary easier
to navigate. The apple driver had been doing this wrong, leaking the
controller device memory on a tagset failure. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Fix potential memory leak in the timestamp extension
If fetching of userspace memory fails during the main loop, all drm sync
objs looked up until that point will be leaked because of the missing
drm_syncobj_put.
Fix it by exporting and using a common cleanup helper.
(cherry picked from commit 753ce4fea62182c77e1691ab4f9022008f25b62e) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Fix potential memory leak in the performance extension
If fetching of userspace memory fails during the main loop, all drm sync
objs looked up until that point will be leaked because of the missing
drm_syncobj_put.
Fix it by exporting and using a common cleanup helper.
(cherry picked from commit 484de39fa5f5b7bd0c5f2e2c5265167250ef7501) |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix memory leak in audio daemon attach operation
Audio PD daemon send the name as part of the init IOCTL call. This
name needs to be copied to kernel for which memory is allocated.
This memory is never freed which might result in memory leak. Free
the memory when it is not needed. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate: fix memory leak on CPU EPP exit
The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is
not freed in the analogous exit function, so fix that.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/region: Fix memregion leaks in devm_cxl_add_region()
Move the mode verification to __create_region() before allocating the
memregion to avoid the memregion leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix missing sk_buff release in seg6_input_core
The seg6_input() function is responsible for adding the SRH into a
packet, delegating the operation to the seg6_input_core(). This function
uses the skb_cow_head() to ensure that there is sufficient headroom in
the sk_buff for accommodating the link-layer header.
In the event that the skb_cow_header() function fails, the
seg6_input_core() catches the error but it does not release the sk_buff,
which will result in a memory leak.
This issue was introduced in commit af3b5158b89d ("ipv6: sr: fix BUG due
to headroom too small after SRH push") and persists even after commit
7a3f5b0de364 ("netfilter: add netfilter hooks to SRv6 data plane"),
where the entire seg6_input() code was refactored to deal with netfilter
hooks.
The proposed patch addresses the identified memory leak by requiring the
seg6_input_core() function to release the sk_buff in the event that
skb_cow_head() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix memleak in seg6_hmac_init_algo
seg6_hmac_init_algo returns without cleaning up the previous allocations
if one fails, so it's going to leak all that memory and the crypto tfms.
Update seg6_hmac_exit to only free the memory when allocated, so we can
reuse the code directly. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: hns3: Actually use devm_add_action_or_reset()
pci_alloc_irq_vectors() allocates an irq vector. When devm_add_action()
fails, the irq vector is not freed, which leads to a memory leak.
Replace the devm_add_action with devm_add_action_or_reset to ensure
the irq vector can be destroyed when it fails. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix potential memory leakage when reading chip temperature
Without this commit, reading chip temperature will cause memory leakage. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix kmemleak in rdma_core observed during blktests nvme/rdma use siw
When running blktests nvme/rdma, the following kmemleak issue will appear.
kmemleak: Kernel memory leak detector initialized (mempool available:36041)
kmemleak: Automatic memory scanning thread started
kmemleak: 2 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 8 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 17 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 4 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
unreferenced object 0xffff88855da53400 (size 192):
comm "rdma", pid 10630, jiffies 4296575922
hex dump (first 32 bytes):
37 00 00 00 00 00 00 00 c0 ff ff ff 1f 00 00 00 7...............
10 34 a5 5d 85 88 ff ff 10 34 a5 5d 85 88 ff ff .4.].....4.]....
backtrace (crc 47f66721):
[<ffffffff911251bd>] kmalloc_trace+0x30d/0x3b0
[<ffffffffc2640ff7>] alloc_gid_entry+0x47/0x380 [ib_core]
[<ffffffffc2642206>] add_modify_gid+0x166/0x930 [ib_core]
[<ffffffffc2643468>] ib_cache_update.part.0+0x6d8/0x910 [ib_core]
[<ffffffffc2644e1a>] ib_cache_setup_one+0x24a/0x350 [ib_core]
[<ffffffffc263949e>] ib_register_device+0x9e/0x3a0 [ib_core]
[<ffffffffc2a3d389>] 0xffffffffc2a3d389
[<ffffffffc2688cd8>] nldev_newlink+0x2b8/0x520 [ib_core]
[<ffffffffc2645fe3>] rdma_nl_rcv_msg+0x2c3/0x520 [ib_core]
[<ffffffffc264648c>]
rdma_nl_rcv_skb.constprop.0.isra.0+0x23c/0x3a0 [ib_core]
[<ffffffff9270e7b5>] netlink_unicast+0x445/0x710
[<ffffffff9270f1f1>] netlink_sendmsg+0x761/0xc40
[<ffffffff9249db29>] __sys_sendto+0x3a9/0x420
[<ffffffff9249dc8c>] __x64_sys_sendto+0xdc/0x1b0
[<ffffffff92db0ad3>] do_syscall_64+0x93/0x180
[<ffffffff92e00126>] entry_SYSCALL_64_after_hwframe+0x71/0x79
The root cause: rdma_put_gid_attr is not called when sgid_attr is set
to ERR_PTR(-ENODEV). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/cs_dsp_ctl: Use private_free for control cleanup
Use the control private_free callback to free the associated data
block. This ensures that the memory won't leak, whatever way the
control gets destroyed.
The original implementation didn't actually remove the ALSA
controls in hda_cs_dsp_control_remove(). It only freed the internal
tracking structure. This meant it was possible to remove/unload the
amp driver while leaving its ALSA controls still present in the
soundcard. Obviously attempting to access them could cause segfaults
or at least dereferencing stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: Fix memory leak in tpm2_key_encode()
'scratch' is never freed. Fix this by calling kfree() in the success, and
in the error case. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix memory leak in hci_req_sync_complete()
In 'hci_req_sync_complete()', always free the previous sync
request state before assigning reference to a new one. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix transmit scheduler resource leak
Inorder to support shaping and scheduling, Upon class creation
Netdev driver allocates trasmit schedulers.
The previous patch which added support for Round robin scheduling has
a bug due to which driver is not freeing transmit schedulers post
class deletion.
This patch fixes the same. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix possible memory leak in bnxt_rdma_aux_device_init()
If ulp = kzalloc() fails, the allocated edev will leak because it is
not properly assigned and the cleanup path will not be able to free it.
Fix it by assigning it properly immediately after allocation. |