| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: exynos-clkout: Assign .num before accessing .hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer (UBSAN_BOUNDS)
about the number of elements in .hws[], so that it can warn when .hws[]
is accessed out of bounds. As noted in that change, the __counted_by
member must be initialized with the number of elements before the first
array access happens, otherwise there will be a warning from each access
prior to the initialization because the number of elements is zero. This
occurs in exynos_clkout_probe() due to .num being assigned after .hws[]
has been accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/samsung/clk-exynos-clkout.c:178:18
index 0 is out of range for type 'clk_hw *[*]'
Move the .num initialization to before the first access of .hws[],
clearing up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Use spinlock for context list protection lock
Previously a mutex was added to protect the encoder and decoder context
lists from unexpected changes originating from the SCP IP block, causing
the context pointer to go invalid, resulting in a NULL pointer
dereference in the IPI handler.
Turns out on the MT8173, the VPU IPI handler is called from hard IRQ
context. This causes a big warning from the scheduler. This was first
reported downstream on the ChromeOS kernels, but is also reproducible
on mainline using Fluster with the FFmpeg v4l2m2m decoders. Even though
the actual capture format is not supported, the affected code paths
are triggered.
Since this lock just protects the context list and operations on it are
very fast, it should be OK to switch to a spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: change all pageblocks migrate type on coalescing
When a page is freed it coalesces with a buddy into a higher order page
while possible. When the buddy page migrate type differs, it is expected
to be updated to match the one of the page being freed.
However, only the first pageblock of the buddy page is updated, while the
rest of the pageblocks are left unchanged.
That causes warnings in later expand() and other code paths (like below),
since an inconsistency between migration type of the list containing the
page and the page-owned pageblocks migration types is introduced.
[ 308.986589] ------------[ cut here ]------------
[ 308.987227] page type is 0, passed migratetype is 1 (nr=256)
[ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270
[ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E)
[ 308.987439] Unloaded tainted modules: hmac_s390(E):2
[ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT
[ 308.987657] Tainted: [E]=UNSIGNED_MODULE
[ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0)
[ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270)
[ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88
[ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300
[ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008
[ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0
[ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4
00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60
#00000349976fa5fc: af000000 mc 0,0
>00000349976fa600: a7f4ff4c brc 15,00000349976fa498
00000349976fa604: b9040026 lgr %r2,%r6
00000349976fa608: c0300088317f larl %r3,0000034998800906
00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0
00000349976fa614: af000000 mc 0,0
[ 308.987734] Call Trace:
[ 308.987738] [<00000349976fa600>] expand+0x240/0x270
[ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270)
[ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940
[ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0
[ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40
[ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0
[ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400
[ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220
[ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0
[ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0
[ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240
[ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210
[ 308.987804] [<00000349976cb0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure context reset on disconnect()
After the blamed commit below, if the MPC subflow is already in TCP_CLOSE
status or has fallback to TCP at mptcp_disconnect() time,
mptcp_do_fastclose() skips setting the `send_fastclose flag` and the later
__mptcp_close_ssk() does not reset anymore the related subflow context.
Any later connection will be created with both the `request_mptcp` flag
and the msk-level fallback status off (it is unconditionally cleared at
MPTCP disconnect time), leading to a warning in subflow_data_ready():
WARNING: CPU: 26 PID: 8996 at net/mptcp/subflow.c:1519 subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13))
Modules linked in:
CPU: 26 UID: 0 PID: 8996 Comm: syz.22.39 Not tainted 6.18.0-rc7-05427-g11fc074f6c36 #1 PREEMPT(voluntary)
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
RIP: 0010:subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13))
Code: 90 0f 0b 90 90 e9 04 fe ff ff e8 b7 1e f5 fe 89 ee bf 07 00 00 00 e8 db 19 f5 fe 83 fd 07 0f 84 35 ff ff ff e8 9d 1e f5 fe 90 <0f> 0b 90 e9 27 ff ff ff e8 8f 1e f5 fe 4c 89 e7 48 89 de e8 14 09
RSP: 0018:ffffc9002646fb30 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff88813b218000 RCX: ffffffff825c8435
RDX: ffff8881300b3580 RSI: ffffffff825c8443 RDI: 0000000000000005
RBP: 000000000000000b R08: ffffffff825c8435 R09: 000000000000000b
R10: 0000000000000005 R11: 0000000000000007 R12: ffff888131ac0000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f88330af6c0(0000) GS:ffff888a93dd2000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f88330aefe8 CR3: 000000010ff59000 CR4: 0000000000350ef0
Call Trace:
<TASK>
tcp_data_ready (net/ipv4/tcp_input.c:5356)
tcp_data_queue (net/ipv4/tcp_input.c:5445)
tcp_rcv_state_process (net/ipv4/tcp_input.c:7165)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1955)
__release_sock (include/net/sock.h:1158 (discriminator 6) net/core/sock.c:3180 (discriminator 6))
release_sock (net/core/sock.c:3737)
mptcp_sendmsg (net/mptcp/protocol.c:1763 net/mptcp/protocol.c:1857)
inet_sendmsg (net/ipv4/af_inet.c:853 (discriminator 7))
__sys_sendto (net/socket.c:727 (discriminator 15) net/socket.c:742 (discriminator 15) net/socket.c:2244 (discriminator 15))
__x64_sys_sendto (net/socket.c:2247)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f883326702d
Address the issue setting an explicit `fastclosing` flag at fastclose
time, and checking such flag after mptcp_do_fastclose(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer
Initialize the eb.vma array with values of 0 when the eb structure is
first set up. In particular, this sets the eb->vma[i].vma pointers to
NULL, simplifying cleanup and getting rid of the bug described below.
During the execution of eb_lookup_vmas(), the eb->vma array is
successively filled up with struct eb_vma objects. This process includes
calling eb_add_vma(), which might fail; however, even in the event of
failure, eb->vma[i].vma is set for the currently processed buffer.
If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which
prompts a call to eb_release_vmas() to clean up the mess. Since
eb_lookup_vmas() might fail during processing any (possibly not first)
buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know
at what point did the lookup function fail.
In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper
function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is
set to NULL in case i915_gem_object_userptr_submit_init() fails; the
current one needs to be cleaned up by eb_release_vmas() at this point,
so the next one is set. If eb_add_vma() fails, neither the current nor
the next vma is set to NULL, which is a source of a NULL deref bug
described in the issue linked in the Closes tag.
When entering eb_lookup_vmas(), the vma pointers are set to the slab
poison value, instead of NULL. This doesn't matter for the actual
lookup, since it gets overwritten anyway, however the eb_release_vmas()
function only recognizes NULL as the stopping value, hence the pointers
are being set to NULL as they go in case of intermediate failure. This
patch changes the approach to filling them all with NULL at the start
instead, rather than handling that manually during failure.
(cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd) |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: fix possible null-pointer dereferences in raid5_store_group_thread_cnt()
The variable mddev->private is first assigned to conf and then checked:
conf = mddev->private;
if (!conf) ...
If conf is NULL, then mddev->private is also NULL. In this case,
null-pointer dereferences can occur when calling raid5_quiesce():
raid5_quiesce(mddev, true);
raid5_quiesce(mddev, false);
since mddev->private is assigned to conf again in raid5_quiesce(), and conf
is dereferenced in several places, for example:
conf->quiesce = 0;
wake_up(&conf->wait_for_quiescent);
To fix this issue, the function should unlock mddev and return before
invoking raid5_quiesce() when conf is NULL, following the existing pattern
in raid5_change_consistency_policy(). |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Sign extend kfunc call arguments
The kfunc calls are native calls so they should follow LoongArch calling
conventions. Sign extend its arguments properly to avoid kernel panic.
This is done by adding a new emit_abi_ext() helper. The emit_abi_ext()
helper performs extension in place meaning a value already store in the
target register (Note: this is different from the existing sign_extend()
helper and thus we can't reuse it). |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| In the Linux kernel, the following vulnerability has been resolved:
block/ioctl: prefer different overflow check
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer shows this report:
[ 62.982337] ------------[ cut here ]------------
[ 62.985692] cgroup: Invalid name
[ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46
[ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1
[ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long'
[ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1
[ 62.999369] random: crng reseeded on system resumption
[ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000)
[ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 63.000682] Call Trace:
[ 63.000686] <TASK>
[ 63.000731] dump_stack_lvl+0x93/0xd0
[ 63.000919] __get_user_pages+0x903/0xd30
[ 63.001030] __gup_longterm_locked+0x153e/0x1ba0
[ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50
[ 63.001072] ? try_get_folio+0x29c/0x2d0
[ 63.001083] internal_get_user_pages_fast+0x1119/0x1530
[ 63.001109] iov_iter_extract_pages+0x23b/0x580
[ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220
[ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410
[ 63.001297] __iomap_dio_rw+0xab4/0x1810
[ 63.001316] iomap_dio_rw+0x45/0xa0
[ 63.001328] ext4_file_write_iter+0xdde/0x1390
[ 63.001372] vfs_write+0x599/0xbd0
[ 63.001394] ksys_write+0xc8/0x190
[ 63.001403] do_syscall_64+0xd4/0x1b0
[ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60
[ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77
[ 63.001535] RIP: 0033:0x7f7fd3ebf539
[ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
[ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539
[ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004
[ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000
[ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8
...
[ 63.018142] ---[ end trace ]---
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang; It was re-enabled in the
kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow
sanitizer").
Let's rework this overflow checking logic to not actually perform an
overflow during the check itself, thus avoiding the UBSAN splat.
[1]: https://github.com/llvm/llvm-project/pull/82432 |
| Unspecified vulnerability in the ExternalInterface ActionScript functionality in Adobe Flash Player before 10.3.183.67 and 11.x before 11.6.602.171 on Windows and Mac OS X, and before 10.3.183.67 and 11.x before 11.2.202.273 on Linux, allows remote attackers to execute arbitrary code via crafted SWF content, as exploited in the wild in February 2013. |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: Add a check for packet size after reading from shared memory
Add a check to ensure that the packet size does not exceed the number of
available words after reading the packet header from shared memory. This
ensures that the size provided by the firmware is safe to process and
prevent potential out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Lock resolution while streaming
When an program is streaming (ffplay) and another program (qv4l2)
changes the TV standard from NTSC to PAL, the kernel crashes due to trying
to copy to unmapped memory.
Changing from NTSC to PAL increases the resolution in the usbtv struct,
but the video plane buffer isn't adjusted, so it overflows.
[hverkuil: call vb2_is_busy instead of vb2_is_streaming] |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: fix panic due to PSLVERR
When the PSLVERR_RESP_EN parameter is set to 1, the device generates
an error response if an attempt is made to read an empty RBR (Receive
Buffer Register) while the FIFO is enabled.
In serial8250_do_startup(), calling serial_port_out(port, UART_LCR,
UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes
dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter
function enables the FIFO via serial_out(p, UART_FCR, p->fcr).
Execution proceeds to the serial_port_in(port, UART_RX).
This satisfies the PSLVERR trigger condition.
When another CPU (e.g., using printk()) is accessing the UART (UART
is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) ==
(lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter
dw8250_force_idle().
Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock
to fix this issue.
Panic backtrace:
[ 0.442336] Oops - unknown exception [#1]
[ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a
[ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e
...
[ 0.442416] console_on_rootfs+0x26/0x70 |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix filehandle bounds checking in nfs_fh_to_dentry()
The function needs to check the minimal filehandle length before it can
access the embedded filehandle. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "fs/ntfs3: Replace inode_trylock with inode_lock"
This reverts commit 69505fe98f198ee813898cbcaf6770949636430b.
Initially, conditional lock acquisition was removed to fix an xfstest bug
that was observed during internal testing. The deadlock reported by syzbot
is resolved by reintroducing conditional acquisition. The xfstest bug no
longer occurs on kernel version 6.16-rc1 during internal testing. I
assume that changes in other modules may have contributed to this. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: Fix use-after-free in cifs_fill_dirent
There is a race condition in the readdir concurrency process, which may
access the rsp buffer after it has been released, triggering the
following KASAN warning.
==================================================================
BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs]
Read of size 4 at addr ffff8880099b819c by task a.out/342975
CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
print_report+0xce/0x640
kasan_report+0xb8/0xf0
cifs_fill_dirent+0xb03/0xb60 [cifs]
cifs_readdir+0x12cb/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f996f64b9f9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8
RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e
RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88
R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000
</TASK>
Allocated by task 408:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
__kasan_slab_alloc+0x6e/0x70
kmem_cache_alloc_noprof+0x117/0x3d0
mempool_alloc_noprof+0xf2/0x2c0
cifs_buf_get+0x36/0x80 [cifs]
allocate_buffers+0x1d2/0x330 [cifs]
cifs_demultiplex_thread+0x22b/0x2690 [cifs]
kthread+0x394/0x720
ret_from_fork+0x34/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 342979:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x37/0x50
kmem_cache_free+0x2b8/0x500
cifs_buf_release+0x3c/0x70 [cifs]
cifs_readdir+0x1c97/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents64+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The buggy address belongs to the object at ffff8880099b8000
which belongs to the cache cifs_request of size 16588
The buggy address is located 412 bytes inside of
freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8
head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x80000000000040(head|node=0|zone=1)
page_type: f5(slab)
raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff
head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
POC is available in the link [1].
The problem triggering process is as follows:
Process 1 Process 2
-----------------------------------
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: release expired exception dst cached in socket
Dst objects get leaked in ip6_negative_advice() when this function is
executed for an expired IPv6 route located in the exception table. There
are several conditions that must be fulfilled for the leak to occur:
* an ICMPv6 packet indicating a change of the MTU for the path is received,
resulting in an exception dst being created
* a TCP connection that uses the exception dst for routing packets must
start timing out so that TCP begins retransmissions
* after the exception dst expires, the FIB6 garbage collector must not run
before TCP executes ip6_negative_advice() for the expired exception dst
When TCP executes ip6_negative_advice() for an exception dst that has
expired and if no other socket holds a reference to the exception dst, the
refcount of the exception dst is 2, which corresponds to the increment
made by dst_init() and the increment made by the TCP socket for which the
connection is timing out. The refcount made by the socket is never
released. The refcount of the dst is decremented in sk_dst_reset() but
that decrement is counteracted by a dst_hold() intentionally placed just
before the sk_dst_reset() in ip6_negative_advice(). After
ip6_negative_advice() has finished, there is no other object tied to the
dst. The socket lost its reference stored in sk_dst_cache and the dst is
no longer in the exception table. The exception dst becomes a leaked
object.
As a result of this dst leak, an unbalanced refcount is reported for the
loopback device of a net namespace being destroyed under kernels that do
not contain e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"):
unregister_netdevice: waiting for lo to become free. Usage count = 2
Fix the dst leak by removing the dst_hold() in ip6_negative_advice(). The
patch that introduced the dst_hold() in ip6_negative_advice() was
92f1655aa2b22 ("net: fix __dst_negative_advice() race"). But 92f1655aa2b22
merely refactored the code with regards to the dst refcount so the issue
was present even before 92f1655aa2b22. The bug was introduced in
54c1a859efd9f ("ipv6: Don't drop cache route entry unless timer actually
expired.") where the expired cached route is deleted and the sk_dst_cache
member of the socket is set to NULL by calling dst_negative_advice() but
the refcount belonging to the socket is left unbalanced.
The IPv4 version - ipv4_negative_advice() - is not affected by this bug.
When the TCP connection times out ipv4_negative_advice() merely resets the
sk_dst_cache of the socket while decrementing the refcount of the
exception dst. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/mchp-eic: Fix error code in mchp_eic_domain_alloc()
If irq_domain_translate_twocell() sets "hwirq" to >= MCHP_EIC_NIRQ (2) then
it results in an out of bounds access.
The code checks for invalid values, but doesn't set the error code. Return
-EINVAL in that case, instead of returning success. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: starfive - Correctly handle return of sg_nents_for_len
The return value of sg_nents_for_len was assigned to an unsigned long
in starfive_hash_digest, causing negative error codes to be converted
to large positive integers.
Add error checking for sg_nents_for_len and return immediately on
failure to prevent potential buffer overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Use RCU in blk_mq_[un]quiesce_tagset() instead of set->tag_list_lock
blk_mq_{add,del}_queue_tag_set() functions add and remove queues from
tagset, the functions make sure that tagset and queues are marked as
shared when two or more queues are attached to the same tagset.
Initially a tagset starts as unshared and when the number of added
queues reaches two, blk_mq_add_queue_tag_set() marks it as shared along
with all the queues attached to it. When the number of attached queues
drops to 1 blk_mq_del_queue_tag_set() need to mark both the tagset and
the remaining queues as unshared.
Both functions need to freeze current queues in tagset before setting on
unsetting BLK_MQ_F_TAG_QUEUE_SHARED flag. While doing so, both functions
hold set->tag_list_lock mutex, which makes sense as we do not want
queues to be added or deleted in the process. This used to work fine
until commit 98d81f0df70c ("nvme: use blk_mq_[un]quiesce_tagset")
made the nvme driver quiesce tagset instead of quiscing individual
queues. blk_mq_quiesce_tagset() does the job and quiesce the queues in
set->tag_list while holding set->tag_list_lock also.
This results in deadlock between two threads with these stacktraces:
__schedule+0x47c/0xbb0
? timerqueue_add+0x66/0xb0
schedule+0x1c/0xa0
schedule_preempt_disabled+0xa/0x10
__mutex_lock.constprop.0+0x271/0x600
blk_mq_quiesce_tagset+0x25/0xc0
nvme_dev_disable+0x9c/0x250
nvme_timeout+0x1fc/0x520
blk_mq_handle_expired+0x5c/0x90
bt_iter+0x7e/0x90
blk_mq_queue_tag_busy_iter+0x27e/0x550
? __blk_mq_complete_request_remote+0x10/0x10
? __blk_mq_complete_request_remote+0x10/0x10
? __call_rcu_common.constprop.0+0x1c0/0x210
blk_mq_timeout_work+0x12d/0x170
process_one_work+0x12e/0x2d0
worker_thread+0x288/0x3a0
? rescuer_thread+0x480/0x480
kthread+0xb8/0xe0
? kthread_park+0x80/0x80
ret_from_fork+0x2d/0x50
? kthread_park+0x80/0x80
ret_from_fork_asm+0x11/0x20
__schedule+0x47c/0xbb0
? xas_find+0x161/0x1a0
schedule+0x1c/0xa0
blk_mq_freeze_queue_wait+0x3d/0x70
? destroy_sched_domains_rcu+0x30/0x30
blk_mq_update_tag_set_shared+0x44/0x80
blk_mq_exit_queue+0x141/0x150
del_gendisk+0x25a/0x2d0
nvme_ns_remove+0xc9/0x170
nvme_remove_namespaces+0xc7/0x100
nvme_remove+0x62/0x150
pci_device_remove+0x23/0x60
device_release_driver_internal+0x159/0x200
unbind_store+0x99/0xa0
kernfs_fop_write_iter+0x112/0x1e0
vfs_write+0x2b1/0x3d0
ksys_write+0x4e/0xb0
do_syscall_64+0x5b/0x160
entry_SYSCALL_64_after_hwframe+0x4b/0x53
The top stacktrace is showing nvme_timeout() called to handle nvme
command timeout. timeout handler is trying to disable the controller and
as a first step, it needs to blk_mq_quiesce_tagset() to tell blk-mq not
to call queue callback handlers. The thread is stuck waiting for
set->tag_list_lock as it tries to walk the queues in set->tag_list.
The lock is held by the second thread in the bottom stack which is
waiting for one of queues to be frozen. The queue usage counter will
drop to zero after nvme_timeout() finishes, and this will not happen
because the thread will wait for this mutex forever.
Given that [un]quiescing queue is an operation that does not need to
sleep, update blk_mq_[un]quiesce_tagset() to use RCU instead of taking
set->tag_list_lock, update blk_mq_{add,del}_queue_tag_set() to use RCU
safe list operations. Also, delete INIT_LIST_HEAD(&q->tag_set_list)
in blk_mq_del_queue_tag_set() because we can not re-initialize it while
the list is being traversed under RCU. The deleted queue will not be
added/deleted to/from a tagset and it will be freed in blk_free_queue()
after the end of RCU grace period. |