Search Results (4282 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-22824 5 Debian, Libexpat Project, Redhat and 2 more 6 Debian Linux, Libexpat, Enterprise Linux and 3 more 2025-05-05 9.8 Critical
defineAttribute in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
CVE-2022-22823 5 Debian, Libexpat Project, Redhat and 2 more 6 Debian Linux, Libexpat, Enterprise Linux and 3 more 2025-05-05 9.8 Critical
build_model in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
CVE-2022-22822 5 Debian, Libexpat Project, Redhat and 2 more 6 Debian Linux, Libexpat, Enterprise Linux and 3 more 2025-05-05 9.8 Critical
addBinding in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
CVE-2022-21738 1 Google 1 Tensorflow 2025-05-05 6.5 Medium
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` can be made to crash a TensorFlow process by an integer overflow whose result is then used in a memory allocation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21733 1 Google 1 Tensorflow 2025-05-05 4.3 Medium
Tensorflow is an Open Source Machine Learning Framework. The implementation of `StringNGrams` can be used to trigger a denial of service attack by causing an out of memory condition after an integer overflow. We are missing a validation on `pad_witdh` and that result in computing a negative value for `ngram_width` which is later used to allocate parts of the output. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21729 1 Google 1 Tensorflow 2025-05-05 6.5 Medium
Tensorflow is an Open Source Machine Learning Framework. The implementation of `UnravelIndex` is vulnerable to a division by zero caused by an integer overflow bug. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2022-21727 1 Google 1 Tensorflow 2025-05-05 7.6 High
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
CVE-2021-46143 5 Libexpat Project, Netapp, Redhat and 2 more 10 Libexpat, Active Iq Unified Manager, Clustered Data Ontap and 7 more 2025-05-05 8.1 High
In doProlog in xmlparse.c in Expat (aka libexpat) before 2.4.3, an integer overflow exists for m_groupSize.
CVE-2023-38427 2 Linux, Netapp 5 Linux Kernel, H300s, H410s and 2 more 2025-05-05 9.8 Critical
An issue was discovered in the Linux kernel before 6.3.8. fs/smb/server/smb2pdu.c in ksmbd has an integer underflow and out-of-bounds read in deassemble_neg_contexts.
CVE-2023-26242 1 Linux 1 Linux Kernel 2025-05-05 7.8 High
afu_mmio_region_get_by_offset in drivers/fpga/dfl-afu-region.c in the Linux kernel through 6.1.12 has an integer overflow.
CVE-2023-23559 3 Debian, Linux, Netapp 3 Debian Linux, Linux Kernel, Hci Baseboard Management Controller 2025-05-05 7.8 High
In rndis_query_oid in drivers/net/wireless/rndis_wlan.c in the Linux kernel through 6.1.5, there is an integer overflow in an addition.
CVE-2023-0933 1 Google 1 Chrome 2025-05-05 8.8 High
Integer overflow in PDF in Google Chrome prior to 110.0.5481.177 allowed a remote attacker to potentially exploit heap corruption via a crafted PDF file. (Chromium security severity: Medium)
CVE-2023-0705 1 Google 1 Chrome 2025-05-05 7.5 High
Integer overflow in Core in Google Chrome prior to 110.0.5481.77 allowed a remote attacker who had one a race condition to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Low)
CVE-2020-24370 4 Debian, Fedoraproject, Lua and 1 more 4 Debian Linux, Fedora, Lua and 1 more 2025-05-05 5.3 Medium
ldebug.c in Lua 5.4.0 allows a negation overflow and segmentation fault in getlocal and setlocal, as demonstrated by getlocal(3,2^31).
CVE-2024-43838 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: fix overflow check in adjust_jmp_off() adjust_jmp_off() incorrectly used the insn->imm field for all overflow check, which is incorrect as that should only be done or the BPF_JMP32 | BPF_JA case, not the general jump instruction case. Fix it by using insn->off for overflow check in the general case.
CVE-2024-42133 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Ignore too large handle values in BIG hci_le_big_sync_established_evt is necessary to filter out cases where the handle value is belonging to ida id range, otherwise ida will be erroneously released in hci_conn_cleanup.
CVE-2024-35905 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Protect against int overflow for stack access size This patch re-introduces protection against the size of access to stack memory being negative; the access size can appear negative as a result of overflowing its signed int representation. This should not actually happen, as there are other protections along the way, but we should protect against it anyway. One code path was missing such protections (fixed in the previous patch in the series), causing out-of-bounds array accesses in check_stack_range_initialized(). This patch causes the verification of a program with such a non-sensical access size to fail. This check used to exist in a more indirect way, but was inadvertendly removed in a833a17aeac7.
CVE-2024-26766 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix sdma.h tx->num_descs off-by-one error Unfortunately the commit `fd8958efe877` introduced another error causing the `descs` array to overflow. This reults in further crashes easily reproducible by `sendmsg` system call. [ 1080.836473] general protection fault, probably for non-canonical address 0x400300015528b00a: 0000 [#1] PREEMPT SMP PTI [ 1080.869326] RIP: 0010:hfi1_ipoib_build_ib_tx_headers.constprop.0+0xe1/0x2b0 [hfi1] -- [ 1080.974535] Call Trace: [ 1080.976990] <TASK> [ 1081.021929] hfi1_ipoib_send_dma_common+0x7a/0x2e0 [hfi1] [ 1081.027364] hfi1_ipoib_send_dma_list+0x62/0x270 [hfi1] [ 1081.032633] hfi1_ipoib_send+0x112/0x300 [hfi1] [ 1081.042001] ipoib_start_xmit+0x2a9/0x2d0 [ib_ipoib] [ 1081.046978] dev_hard_start_xmit+0xc4/0x210 -- [ 1081.148347] __sys_sendmsg+0x59/0xa0 crash> ipoib_txreq 0xffff9cfeba229f00 struct ipoib_txreq { txreq = { list = { next = 0xffff9cfeba229f00, prev = 0xffff9cfeba229f00 }, descp = 0xffff9cfeba229f40, coalesce_buf = 0x0, wait = 0xffff9cfea4e69a48, complete = 0xffffffffc0fe0760 <hfi1_ipoib_sdma_complete>, packet_len = 0x46d, tlen = 0x0, num_desc = 0x0, desc_limit = 0x6, next_descq_idx = 0x45c, coalesce_idx = 0x0, flags = 0x0, descs = {{ qw = {0x8024000120dffb00, 0x4} # SDMA_DESC0_FIRST_DESC_FLAG (bit 63) }, { qw = { 0x3800014231b108, 0x4} }, { qw = { 0x310000e4ee0fcf0, 0x8} }, { qw = { 0x3000012e9f8000, 0x8} }, { qw = { 0x59000dfb9d0000, 0x8} }, { qw = { 0x78000e02e40000, 0x8} }} }, sdma_hdr = 0x400300015528b000, <<< invalid pointer in the tx request structure sdma_status = 0x0, SDMA_DESC0_LAST_DESC_FLAG (bit 62) complete = 0x0, priv = 0x0, txq = 0xffff9cfea4e69880, skb = 0xffff9d099809f400 } If an SDMA send consists of exactly 6 descriptors and requires dword padding (in the 7th descriptor), the sdma_txreq descriptor array is not properly expanded and the packet will overflow into the container structure. This results in a panic when the send completion runs. The exact panic varies depending on what elements of the container structure get corrupted. The fix is to use the correct expression in _pad_sdma_tx_descs() to test the need to expand the descriptor array. With this patch the crashes are no longer reproducible and the machine is stable.
CVE-2024-53192 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: clk-loongson2: Fix potential buffer overflow in flexible-array member access Flexible-array member `hws` in `struct clk_hw_onecell_data` is annotated with the `counted_by()` attribute. This means that when memory is allocated for this array, the _counter_, which in this case is member `num` in the flexible structure, should be set to the maximum number of elements the flexible array can contain, or fewer. In this case, the total number of elements for the flexible array is determined by variable `clks_num` when allocating heap space via `devm_kzalloc()`, as shown below: 289 struct loongson2_clk_provider *clp; ... 296 for (p = data; p->name; p++) 297 clks_num++; 298 299 clp = devm_kzalloc(dev, struct_size(clp, clk_data.hws, clks_num), 300 GFP_KERNEL); So, `clp->clk_data.num` should be set to `clks_num` or less, and not exceed `clks_num`, as is currently the case. Otherwise, if data is written into `clp->clk_data.hws[clks_num]`, the instrumentation provided by the compiler won't detect the overflow, leading to a memory corruption bug at runtime. Fix this issue by setting `clp->clk_data.num` to `clks_num`.
CVE-2024-53149 1 Linux 1 Linux Kernel 2025-05-04 4.6 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: glink: fix off-by-one in connector_status UCSI connector's indices start from 1 up to 3, PMIC_GLINK_MAX_PORTS. Correct the condition in the pmic_glink_ucsi_connector_status() callback, fixing Type-C orientation reporting for the third USB-C connector.