| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent NULL pointer dereference in UTF16 conversion
There can be a NULL pointer dereference bug here. NULL is passed to
__cifs_sfu_make_node without checks, which passes it unchecked to
cifs_strndup_to_utf16, which in turn passes it to
cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash.
This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and
returns NULL early to prevent dereferencing NULL pointer.
Found by Linux Verification Center (linuxtesting.org) with SVACE |
| In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Initialize the chan_stats array to zero
The adapter->chan_stats[] array is initialized in
mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out
memory. The array is filled in mwifiex_update_chan_statistics()
and then the user can query the data in mwifiex_cfg80211_dump_survey().
There are two potential issues here. What if the user calls
mwifiex_cfg80211_dump_survey() before the data has been filled in.
Also the mwifiex_update_chan_statistics() function doesn't necessarily
initialize the whole array. Since the array was not initialized at
the start that could result in an information leak.
Also this array is pretty small. It's a maximum of 900 bytes so it's
more appropriate to use kcalloc() instead vmalloc(). |
| Reflected cross-site scripting vulnerability exists in GroupSession Free edition prior to ver5.3.0, GroupSession byCloud prior to ver5.3.3, and GroupSession ZION prior to ver5.3.2. If a user accesses a crafted page or URL, an arbitrary script may be executed on the web browser of the user. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in averta Master Slider allows Stored XSS. This issue affects Master Slider: from n/a through 3.11.0. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in JoomSky JS Job Manager allows Stored XSS. This issue affects JS Job Manager: from n/a through 2.0.2. |
| Cross-site request forgery vulnerability exists in GroupSession Free edition prior to ver5.3.0, GroupSession byCloud prior to ver5.3.3, and GroupSession ZION prior to ver5.3.2. If a user accesses a malicious page while logged in, unintended operations may be performed. |
| An issue was discovered in the AppConnector component version 10.10.0.183 and earlier of enaio 10.10, in the AppConnector component version 11.0.0.183 and earlier of enaio 11.0, and in the AppConnctor component version 11.10.0.183 and earlier of enaio 11.10. The vulnerability allows authenticated remote attackers to inject arbitrary SMTP commands via crafted input to the /osrest/api/organization/sendmail endpoint |
| Improper access control in Azure Resource Manager allows an authorized attacker to elevate privileges over a network. |
| fluidsynth-2.4.6 and earlier versions is vulnerable to Null pointer dereference in fluid_synth_monopoly.c, that can be triggered when loading an invalid midi file. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix possible memleak when register 'hctx' failed
There's issue as follows when do fault injection test:
unreferenced object 0xffff888132a9f400 (size 512):
comm "insmod", pid 308021, jiffies 4324277909 (age 509.733s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 f4 a9 32 81 88 ff ff ...........2....
08 f4 a9 32 81 88 ff ff 00 00 00 00 00 00 00 00 ...2............
backtrace:
[<00000000e8952bb4>] kmalloc_node_trace+0x22/0xa0
[<00000000f9980e0f>] blk_mq_alloc_and_init_hctx+0x3f1/0x7e0
[<000000002e719efa>] blk_mq_realloc_hw_ctxs+0x1e6/0x230
[<000000004f1fda40>] blk_mq_init_allocated_queue+0x27e/0x910
[<00000000287123ec>] __blk_mq_alloc_disk+0x67/0xf0
[<00000000a2a34657>] 0xffffffffa2ad310f
[<00000000b173f718>] 0xffffffffa2af824a
[<0000000095a1dabb>] do_one_initcall+0x87/0x2a0
[<00000000f32fdf93>] do_init_module+0xdf/0x320
[<00000000cbe8541e>] load_module+0x3006/0x3390
[<0000000069ed1bdb>] __do_sys_finit_module+0x113/0x1b0
[<00000000a1a29ae8>] do_syscall_64+0x35/0x80
[<000000009cd878b0>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Fault injection context as follows:
kobject_add
blk_mq_register_hctx
blk_mq_sysfs_register
blk_register_queue
device_add_disk
null_add_dev.part.0 [null_blk]
As 'blk_mq_register_hctx' may already add some objects when failed halfway,
but there isn't do fallback, caller don't know which objects add failed.
To solve above issue just do fallback when add objects failed halfway in
'blk_mq_register_hctx'. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
kobject: Add sanity check for kset->kobj.ktype in kset_register()
When I register a kset in the following way:
static struct kset my_kset;
kobject_set_name(&my_kset.kobj, "my_kset");
ret = kset_register(&my_kset);
A null pointer dereference exception is occurred:
[ 4453.568337] Unable to handle kernel NULL pointer dereference at \
virtual address 0000000000000028
... ...
[ 4453.810361] Call trace:
[ 4453.813062] kobject_get_ownership+0xc/0x34
[ 4453.817493] kobject_add_internal+0x98/0x274
[ 4453.822005] kset_register+0x5c/0xb4
[ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset]
... ...
Because I didn't initialize my_kset.kobj.ktype.
According to the description in Documentation/core-api/kobject.rst:
- A ktype is the type of object that embeds a kobject. Every structure
that embeds a kobject needs a corresponding ktype.
So add sanity check to make sure kset->kobj.ktype is not NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup()
devm_kzalloc() may fail, clk_data->name might be NULL and will
cause a NULL pointer dereference later.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: Fix UBSAN: array-index-out-of-bounds in dbAllocDmapLev
Syzkaller reported the following issue:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:1965:6
index -84 is out of range for type 's8[341]' (aka 'signed char[341]')
CPU: 1 PID: 4995 Comm: syz-executor146 Not tainted 6.4.0-rc6-syzkaller-00037-gb6dad5178cea #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
dbAllocDmapLev+0x3e5/0x430 fs/jfs/jfs_dmap.c:1965
dbAllocCtl+0x113/0x920 fs/jfs/jfs_dmap.c:1809
dbAllocAG+0x28f/0x10b0 fs/jfs/jfs_dmap.c:1350
dbAlloc+0x658/0xca0 fs/jfs/jfs_dmap.c:874
dtSplitUp fs/jfs/jfs_dtree.c:974 [inline]
dtInsert+0xda7/0x6b00 fs/jfs/jfs_dtree.c:863
jfs_create+0x7b6/0xbb0 fs/jfs/namei.c:137
lookup_open fs/namei.c:3492 [inline]
open_last_lookups fs/namei.c:3560 [inline]
path_openat+0x13df/0x3170 fs/namei.c:3788
do_filp_open+0x234/0x490 fs/namei.c:3818
do_sys_openat2+0x13f/0x500 fs/open.c:1356
do_sys_open fs/open.c:1372 [inline]
__do_sys_openat fs/open.c:1388 [inline]
__se_sys_openat fs/open.c:1383 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1383
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1f4e33f7e9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc21129578 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1f4e33f7e9
RDX: 000000000000275a RSI: 0000000020000040 RDI: 00000000ffffff9c
RBP: 00007f1f4e2ff080 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f1f4e2ff110
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The bug occurs when the dbAllocDmapLev()function attempts to access
dp->tree.stree[leafidx + LEAFIND] while the leafidx value is negative.
To rectify this, the patch introduces a safeguard within the
dbAllocDmapLev() function. A check has been added to verify if leafidx is
negative. If it is, the function immediately returns an I/O error, preventing
any further execution that could potentially cause harm.
Tested via syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
start_kernel: Add __no_stack_protector function attribute
Back during the discussion of
commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try")
we discussed the need for a function attribute to control the omission
of stack protectors on a per-function basis; at the time Clang had
support for no_stack_protector but GCC did not. This was fixed in
gcc-11. Now that the function attribute is available, let's start using
it.
Callers of boot_init_stack_canary need to use this function attribute
unless they're compiled with -fno-stack-protector, otherwise the canary
stored in the stack slot of the caller will differ upon the call to
boot_init_stack_canary. This will lead to a call to __stack_chk_fail()
then panic. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix slab-use-after-free in decode_session6
When the xfrm device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when the xfrm device sends IPv6 packets.
The stack information is as follows:
BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890
Read of size 1 at addr ffff8881111458ef by task swapper/3/0
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0xd9/0x150
print_address_description.constprop.0+0x2c/0x3c0
kasan_report+0x11d/0x130
decode_session6+0x103f/0x1890
__xfrm_decode_session+0x54/0xb0
xfrmi_xmit+0x173/0x1ca0
dev_hard_start_xmit+0x187/0x700
sch_direct_xmit+0x1a3/0xc30
__qdisc_run+0x510/0x17a0
__dev_queue_xmit+0x2215/0x3b10
neigh_connected_output+0x3c2/0x550
ip6_finish_output2+0x55a/0x1550
ip6_finish_output+0x6b9/0x1270
ip6_output+0x1f1/0x540
ndisc_send_skb+0xa63/0x1890
ndisc_send_rs+0x132/0x6f0
addrconf_rs_timer+0x3f1/0x870
call_timer_fn+0x1a0/0x580
expire_timers+0x29b/0x4b0
run_timer_softirq+0x326/0x910
__do_softirq+0x1d4/0x905
irq_exit_rcu+0xb7/0x120
sysvec_apic_timer_interrupt+0x97/0xc0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:intel_idle_hlt+0x23/0x30
Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4
RSP: 0018:ffffc90000197d78 EFLAGS: 00000246
RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5
RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50
RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d
R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000
cpuidle_enter_state+0xd3/0x6f0
cpuidle_enter+0x4e/0xa0
do_idle+0x2fe/0x3c0
cpu_startup_entry+0x18/0x20
start_secondary+0x200/0x290
secondary_startup_64_no_verify+0x167/0x16b
</TASK>
Allocated by task 939:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
__kasan_slab_alloc+0x7f/0x90
kmem_cache_alloc_node+0x1cd/0x410
kmalloc_reserve+0x165/0x270
__alloc_skb+0x129/0x330
inet6_ifa_notify+0x118/0x230
__ipv6_ifa_notify+0x177/0xbe0
addrconf_dad_completed+0x133/0xe00
addrconf_dad_work+0x764/0x1390
process_one_work+0xa32/0x16f0
worker_thread+0x67d/0x10c0
kthread+0x344/0x440
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888111145800
which belongs to the cache skbuff_small_head of size 640
The buggy address is located 239 bytes inside of
freed 640-byte region [ffff888111145800, ffff888111145a80)
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd/iommu_v2: Fix pasid_state refcount dec hit 0 warning on pasid unbind
When unbinding pasid - a race condition exists vs outstanding page faults.
To prevent this, the pasid_state object contains a refcount.
* set to 1 on pasid bind
* incremented on each ppr notification start
* decremented on each ppr notification done
* decremented on pasid unbind
Since refcount_dec assumes that refcount will never reach 0:
the current implementation causes the following to be invoked on
pasid unbind:
REFCOUNT_WARN("decrement hit 0; leaking memory")
Fix this issue by changing refcount_dec to refcount_dec_and_test
to explicitly handle refcount=1. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Properly order ib_device_unalloc() to avoid UAF
ib_dealloc_device() should be called only after device cleanup. Fix the
dealloc sequence. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: tegra124-emc: Fix potential memory leak
The tegra and tegra needs to be freed in the error handling path, otherwise
it will be leaked. |