Search Results (16715 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71073 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: lkkbd - disable pending work before freeing device lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work handler lkkbd_reinit() dereferences the lkkbd structure and its serio/input_dev fields. lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd structure without preventing the reinit work from being queued again until serio_close() returns. This can allow the work handler to run after the structure has been freed, leading to a potential use-after-free. Use disable_work_sync() instead of cancel_work_sync() to ensure the reinit work cannot be re-queued, and call it both in lkkbd_disconnect() and in lkkbd_connect() error paths after serio_open().
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.
CVE-2025-71101 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix out-of-bounds array access in ACPI package parsing The hp_populate_*_elements_from_package() functions in the hp-bioscfg driver contain out-of-bounds array access vulnerabilities. These functions parse ACPI packages into internal data structures using a for loop with index variable 'elem' that iterates through enum_obj/integer_obj/order_obj/password_obj/string_obj arrays. When processing multi-element fields like PREREQUISITES and ENUM_POSSIBLE_VALUES, these functions read multiple consecutive array elements using expressions like 'enum_obj[elem + reqs]' and 'enum_obj[elem + pos_values]' within nested loops. The bug is that the bounds check only validated elem, but did not consider the additional offset when accessing elem + reqs or elem + pos_values. The fix changes the bounds check to validate the actual accessed index.
CVE-2025-68822 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: alps - fix use-after-free bugs caused by dev3_register_work The dev3_register_work delayed work item is initialized within alps_reconnect() and scheduled upon receipt of the first bare PS/2 packet from an external PS/2 device connected to the ALPS touchpad. During device detachment, the original implementation calls flush_workqueue() in psmouse_disconnect() to ensure completion of dev3_register_work. However, the flush_workqueue() in psmouse_disconnect() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after flush_workqueue() has finished executing, the dev3_register_work could still be scheduled. Although the psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(), the scheduling of dev3_register_work remains unaffected. The race condition can occur as follows: CPU 0 (cleanup path) | CPU 1 (delayed work) psmouse_disconnect() | psmouse_set_state() | flush_workqueue() | alps_report_bare_ps2_packet() alps_disconnect() | psmouse_queue_work() kfree(priv); // FREE | alps_register_bare_ps2_mouse() | priv = container_of(work...); // USE | priv->dev3 // USE Add disable_delayed_work_sync() in alps_disconnect() to ensure that dev3_register_work is properly canceled and prevented from executing after the alps_data structure has been deallocated. This bug is identified by static analysis.
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-68802 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Limit num_syncs to prevent oversized allocations The exec and vm_bind ioctl allow userspace to specify an arbitrary num_syncs value. Without bounds checking, a very large num_syncs can force an excessively large allocation, leading to kernel warnings from the page allocator as below. Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request exceeding this limit. " ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124 ... Call Trace: <TASK> alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416 ___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317 __kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348 __do_kmalloc_node mm/slub.c:4364 [inline] __kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388 kmalloc_noprof include/linux/slab.h:909 [inline] kmalloc_array_noprof include/linux/slab.h:948 [inline] xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158 drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797 drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894 xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:598 [inline] __se_sys_ioctl fs/ioctl.c:584 [inline] __x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... " v2: Add "Reported-by" and Cc stable kernels. v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh) v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt) v5: Do the check at the top of the exec func. (Matt) (cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c)
CVE-2025-71088 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fallback earlier on simult connection Syzkaller reports a simult-connect race leading to inconsistent fallback status: WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Modules linked in: CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6 RSP: 0018:ffffc900006cf338 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900 R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004 FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0 Call Trace: <TASK> tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197 tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922 tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672 tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918 ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500 dst_input include/net/dst.h:471 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979 __netif_receive_skb+0x1d/0x160 net/core/dev.c:6092 process_backlog+0x442/0x15e0 net/core/dev.c:6444 __napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494 napi_poll net/core/dev.c:7557 [inline] net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684 handle_softirqs+0x216/0x8e0 kernel/softirq.c:579 run_ksoftirqd kernel/softirq.c:968 [inline] run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960 smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160 kthread+0x3c2/0x780 kernel/kthread.c:463 ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The TCP subflow can process the simult-connect syn-ack packet after transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check, as the sk_state_change() callback is not invoked for * -> FIN_WAIT1 transitions. That will move the msk socket to an inconsistent status and the next incoming data will hit the reported splat. Close the race moving the simult-fallback check at the earliest possible stage - that is at syn-ack generation time. About the fixes tags: [2] was supposed to also fix this issue introduced by [3]. [1] is required as a dependence: it was not explicitly marked as a fix, but it is one and it has already been backported before [3]. In other words, this commit should be backported up to [3], including [2] and [1] if that's not already there.
CVE-2025-68807 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix race between wbt_enable_default and IO submission When wbt_enable_default() is moved out of queue freezing in elevator_change(), it can cause the wbt inflight counter to become negative (-1), leading to hung tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter is in an inconsistent state. The issue occurs because wbt_enable_default() could race with IO submission, allowing the counter to be decremented before proper initialization. This manifests as: rq_wait[0]: inflight: -1 has_waiters: True rwb_enabled() checks the state, which can be updated exactly between wbt_wait() (rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter will become negative. And results in hung task warnings like: task:kworker/u24:39 state:D stack:0 pid:14767 Call Trace: rq_qos_wait+0xb4/0x150 wbt_wait+0xa9/0x100 __rq_qos_throttle+0x24/0x40 blk_mq_submit_bio+0x672/0x7b0 ... Fix this by: 1. Splitting wbt_enable_default() into: - __wbt_enable_default(): Returns true if wbt_init() should be called - wbt_enable_default(): Wrapper for existing callers (no init) - wbt_init_enable_default(): New function that checks and inits WBT 2. Using wbt_init_enable_default() in blk_register_queue() to ensure proper initialization during queue registration 3. Move wbt_init() out of wbt_enable_default() which is only for enabling disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the original lock warning can be avoided. 4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling code since it's no longer needed This ensures WBT is properly initialized before any IO can be submitted, preventing the counter from going negative.
CVE-2025-71090 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg() nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if the client already has a SHARE_ACCESS_READ open from a previous OPEN operation, this action overwrites the existing pointer without releasing its reference, orphaning the previous reference. Additionally, the function originally stored the same nfsd_file pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with only a single reference. When put_deleg_file() runs, it clears fi_rdeleg_file and calls nfs4_file_put_access() to release the file. However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when the fi_access[O_RDONLY] counter drops to zero. If another READ open exists on the file, the counter remains elevated and the nfsd_file reference from the delegation is never released. This potentially causes open conflicts on that file. Then, on server shutdown, these leaks cause __nfsd_file_cache_purge() to encounter files with an elevated reference count that cannot be cleaned up, ultimately triggering a BUG() in kmem_cache_destroy() because there are still nfsd_file objects allocated in that cache.
CVE-2025-71095 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix the crash issue for zero copy XDP_TX action There is a crash issue when running zero copy XDP_TX action, the crash log is shown below. [ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000 [ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP [ 216.301694] Call trace: [ 216.304130] dcache_clean_poc+0x20/0x38 (P) [ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0 [ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400 [ 216.317701] __stmmac_xdp_run_prog+0x164/0x368 [ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00 [ 216.326576] __napi_poll+0x40/0x218 [ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt For XDP_TX action, the xdp_buff is converted to xdp_frame by xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame depends on the memory type of the xdp_buff. For page pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy XSK pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the memory type and always uses the page pool type, this leads to invalid mappings and causes the crash. Therefore, check the xdp_buff memory type in stmmac_xdp_xmit_back() to fix this issue.
CVE-2025-68791 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: missing copy_finish in fuse-over-io-uring argument copies Fix a possible reference count leak of payload pages during fuse argument copies. [Joanne: simplified error cleanup]
CVE-2025-68805 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: fuse: fix io-uring list corruption for terminated non-committed requests When a request is terminated before it has been committed, the request is not removed from the queue's list. This leaves a dangling list entry that leads to list corruption and use-after-free issues. Remove the request from the queue's list for terminated non-committed requests.
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)
CVE-2025-71070 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ublk: clean up user copy references on ublk server exit If a ublk server process releases a ublk char device file, any requests dispatched to the ublk server but not yet completed will retain a ref value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify aborting ublk request"), __ublk_fail_req() would decrement the reference count before completing the failed request. However, that commit optimized __ublk_fail_req() to call __ublk_complete_rq() directly without decrementing the request reference count. The leaked reference count incorrectly allows user copy and zero copy operations on the completed ublk request. It also triggers the WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit() and ublk_deinit_queue(). Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk char dev is closed") already fixed the issue for ublk devices using UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference count leak also affects UBLK_F_USER_COPY, the other reference-counted data copy mode. Fix the condition in ublk_check_and_reset_active_ref() to include all reference-counted data copy modes. This ensures that any ublk requests still owned by the ublk server when it exits have their reference counts reset to 0.
CVE-2025-68778 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't log conflicting inode if it's a dir moved in the current transaction We can't log a conflicting inode if it's a directory and it was moved from one parent directory to another parent directory in the current transaction, as this can result an attempt to have a directory with two hard links during log replay, one for the old parent directory and another for the new parent directory. The following scenario triggers that issue: 1) We have directories "dir1" and "dir2" created in a past transaction. Directory "dir1" has inode A as its parent directory; 2) We move "dir1" to some other directory; 3) We create a file with the name "dir1" in directory inode A; 4) We fsync the new file. This results in logging the inode of the new file and the inode for the directory "dir1" that was previously moved in the current transaction. So the log tree has the INODE_REF item for the new location of "dir1"; 5) We move the new file to some other directory. This results in updating the log tree to included the new INODE_REF for the new location of the file and removes the INODE_REF for the old location. This happens during the rename when we call btrfs_log_new_name(); 6) We fsync the file, and that persists the log tree changes done in the previous step (btrfs_log_new_name() only updates the log tree in memory); 7) We have a power failure; 8) Next time the fs is mounted, log replay happens and when processing the inode for directory "dir1" we find a new INODE_REF and add that link, but we don't remove the old link of the inode since we have not logged the old parent directory of the directory inode "dir1". As a result after log replay finishes when we trigger writeback of the subvolume tree's extent buffers, the tree check will detect that we have a directory a hard link count of 2 and we get a mount failure. The errors and stack traces reported in dmesg/syslog are like this: [ 3845.729764] BTRFS info (device dm-0): start tree-log replay [ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c [ 3845.731236] memcg:ffff9264c02f4e00 [ 3845.731751] aops:btree_aops [btrfs] ino:1 [ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff) [ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8 [ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00 [ 3845.735305] page dumped because: eb page dump [ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir [ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5 [ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701 [ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160 [ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384 [ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0 [ 3845.737797] rdev 0 sequence 2 flags 0x0 [ 3845.737798] atime 1764259517.0 [ 3845.737800] ctime 1764259517.572889464 [ 3845.737801] mtime 1764259517.572889464 [ 3845.737802] otime 1764259517.0 [ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12 [ 3845.737805] index 0 name_len 2 [ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34 [ 3845.737808] location key (257 1 0) type 2 [ 3845.737810] transid 9 data_len 0 name_len 4 [ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34 [ 3845.737813] location key (258 1 0) type 2 [ 3845.737814] transid 9 data_len 0 name_len 4 [ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34 [ 3845.737816] location key (257 1 0) type 2 [ ---truncated---
CVE-2025-71080 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the current task can be preempted. Another task running on the same CPU may then execute rt6_make_pcpu_route() and successfully install a pcpu_rt entry. When the first task resumes execution, its cmpxchg() in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding mdelay() after rt6_get_pcpu_route(). Using preempt_disable/enable is not appropriate here because ip6_rt_pcpu_alloc() may sleep. Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT: free our allocation and return the existing pcpu_rt installed by another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT kernels where such races should not occur.
CVE-2025-68812 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title]
CVE-2025-68810 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was initially created with a guest_memfd binding, as KVM doesn't support toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag. Failure to reject the new memslot results in a use-after-free due to KVM not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY change is easy enough, and can/will be done as a hardening measure (in anticipation of KVM supporting dirty logging on guest_memfd at some point), but fixing the use-after-free would only address the immediate symptom. ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm] Write of size 8 at addr ffff8881111ae908 by task repro/745 CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x51/0x60 print_report+0xcb/0x5c0 kasan_report+0xb4/0xe0 kvm_gmem_release+0x362/0x400 [kvm] __fput+0x2fa/0x9d0 task_work_run+0x12c/0x200 do_exit+0x6ae/0x2100 do_group_exit+0xa8/0x230 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0x737/0x740 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f581f2eac31 </TASK> Allocated by task 745 on cpu 6 at 9.746971s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_kmalloc+0x77/0x90 kvm_set_memory_region.part.0+0x652/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 745 on cpu 6 at 9.747467s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x3b/0x60 kfree+0xf5/0x440 kvm_set_memslot+0x3c2/0x1160 [kvm] kvm_set_memory_region.part.0+0x86a/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-68793 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix a job->pasid access race in gpu recovery Avoid a possible UAF in GPU recovery due to a race between the sched timeout callback and the tdr work queue. The gpu recovery function calls drm_sched_stop() and later drm_sched_start(). drm_sched_start() restarts the tdr queue which will eventually free the job. If the tdr queue frees the job before time out callback completes, the job will be freed and we'll get a UAF when accessing the pasid. Cache it early to avoid the UAF. Example KASAN trace: [ 493.058141] BUG: KASAN: slab-use-after-free in amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.067530] Read of size 4 at addr ffff88b0ce3f794c by task kworker/u128:1/323 [ 493.074892] [ 493.076485] CPU: 9 UID: 0 PID: 323 Comm: kworker/u128:1 Tainted: G E 6.16.0-1289896.2.zuul.bf4f11df81c1410bbe901c4373305a31 #1 PREEMPT(voluntary) [ 493.076493] Tainted: [E]=UNSIGNED_MODULE [ 493.076495] Hardware name: TYAN B8021G88V2HR-2T/S8021GM2NR-2T, BIOS V1.03.B10 04/01/2019 [ 493.076500] Workqueue: amdgpu-reset-dev drm_sched_job_timedout [gpu_sched] [ 493.076512] Call Trace: [ 493.076515] <TASK> [ 493.076518] dump_stack_lvl+0x64/0x80 [ 493.076529] print_report+0xce/0x630 [ 493.076536] ? _raw_spin_lock_irqsave+0x86/0xd0 [ 493.076541] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 493.076545] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077253] kasan_report+0xb8/0xf0 [ 493.077258] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077965] amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.078672] ? __pfx_amdgpu_device_gpu_recover+0x10/0x10 [amdgpu] [ 493.079378] ? amdgpu_coredump+0x1fd/0x4c0 [amdgpu] [ 493.080111] amdgpu_job_timedout+0x642/0x1400 [amdgpu] [ 493.080903] ? pick_task_fair+0x24e/0x330 [ 493.080910] ? __pfx_amdgpu_job_timedout+0x10/0x10 [amdgpu] [ 493.081702] ? _raw_spin_lock+0x75/0xc0 [ 493.081708] ? __pfx__raw_spin_lock+0x10/0x10 [ 493.081712] drm_sched_job_timedout+0x1b0/0x4b0 [gpu_sched] [ 493.081721] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081725] process_one_work+0x679/0xff0 [ 493.081732] worker_thread+0x6ce/0xfd0 [ 493.081736] ? __pfx_worker_thread+0x10/0x10 [ 493.081739] kthread+0x376/0x730 [ 493.081744] ? __pfx_kthread+0x10/0x10 [ 493.081748] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081751] ? __pfx_kthread+0x10/0x10 [ 493.081755] ret_from_fork+0x247/0x330 [ 493.081761] ? __pfx_kthread+0x10/0x10 [ 493.081764] ret_from_fork_asm+0x1a/0x30 [ 493.081771] </TASK> (cherry picked from commit 20880a3fd5dd7bca1a079534cf6596bda92e107d)