| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: accept TCA_STAB only for root qdisc
Most qdiscs maintain their backlog using qdisc_pkt_len(skb)
on the assumption it is invariant between the enqueue()
and dequeue() handlers.
Unfortunately syzbot can crash a host rather easily using
a TBF + SFQ combination, with an STAB on SFQ [1]
We can't support TCA_STAB on arbitrary level, this would
require to maintain per-qdisc storage.
[1]
[ 88.796496] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 88.798611] #PF: supervisor read access in kernel mode
[ 88.799014] #PF: error_code(0x0000) - not-present page
[ 88.799506] PGD 0 P4D 0
[ 88.799829] Oops: Oops: 0000 [#1] SMP NOPTI
[ 88.800569] CPU: 14 UID: 0 PID: 2053 Comm: b371744477 Not tainted 6.12.0-rc1-virtme #1117
[ 88.801107] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 88.801779] RIP: 0010:sfq_dequeue (net/sched/sch_sfq.c:272 net/sched/sch_sfq.c:499) sch_sfq
[ 88.802544] Code: 0f b7 50 12 48 8d 04 d5 00 00 00 00 48 89 d6 48 29 d0 48 8b 91 c0 01 00 00 48 c1 e0 03 48 01 c2 66 83 7a 1a 00 7e c0 48 8b 3a <4c> 8b 07 4c 89 02 49 89 50 08 48 c7 47 08 00 00 00 00 48 c7 07 00
All code
========
0: 0f b7 50 12 movzwl 0x12(%rax),%edx
4: 48 8d 04 d5 00 00 00 lea 0x0(,%rdx,8),%rax
b: 00
c: 48 89 d6 mov %rdx,%rsi
f: 48 29 d0 sub %rdx,%rax
12: 48 8b 91 c0 01 00 00 mov 0x1c0(%rcx),%rdx
19: 48 c1 e0 03 shl $0x3,%rax
1d: 48 01 c2 add %rax,%rdx
20: 66 83 7a 1a 00 cmpw $0x0,0x1a(%rdx)
25: 7e c0 jle 0xffffffffffffffe7
27: 48 8b 3a mov (%rdx),%rdi
2a:* 4c 8b 07 mov (%rdi),%r8 <-- trapping instruction
2d: 4c 89 02 mov %r8,(%rdx)
30: 49 89 50 08 mov %rdx,0x8(%r8)
34: 48 c7 47 08 00 00 00 movq $0x0,0x8(%rdi)
3b: 00
3c: 48 rex.W
3d: c7 .byte 0xc7
3e: 07 (bad)
...
Code starting with the faulting instruction
===========================================
0: 4c 8b 07 mov (%rdi),%r8
3: 4c 89 02 mov %r8,(%rdx)
6: 49 89 50 08 mov %rdx,0x8(%r8)
a: 48 c7 47 08 00 00 00 movq $0x0,0x8(%rdi)
11: 00
12: 48 rex.W
13: c7 .byte 0xc7
14: 07 (bad)
...
[ 88.803721] RSP: 0018:ffff9a1f892b7d58 EFLAGS: 00000206
[ 88.804032] RAX: 0000000000000000 RBX: ffff9a1f8420c800 RCX: ffff9a1f8420c800
[ 88.804560] RDX: ffff9a1f81bc1440 RSI: 0000000000000000 RDI: 0000000000000000
[ 88.805056] RBP: ffffffffc04bb0e0 R08: 0000000000000001 R09: 00000000ff7f9a1f
[ 88.805473] R10: 000000000001001b R11: 0000000000009a1f R12: 0000000000000140
[ 88.806194] R13: 0000000000000001 R14: ffff9a1f886df400 R15: ffff9a1f886df4ac
[ 88.806734] FS: 00007f445601a740(0000) GS:ffff9a2e7fd80000(0000) knlGS:0000000000000000
[ 88.807225] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 88.807672] CR2: 0000000000000000 CR3: 000000050cc46000 CR4: 00000000000006f0
[ 88.808165] Call Trace:
[ 88.808459] <TASK>
[ 88.808710] ? __die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434)
[ 88.809261] ? page_fault_oops (arch/x86/mm/fault.c:715)
[ 88.809561] ? exc_page_fault (./arch/x86/include/asm/irqflags.h:26 ./arch/x86/include/asm/irqflags.h:87 ./arch/x86/include/asm/irqflags.h:147 arch/x86/mm/fault.c:1489 arch/x86/mm/fault.c:1539)
[ 88.809806] ? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:623)
[ 88.810074] ? sfq_dequeue (net/sched/sch_sfq.c:272 net/sched/sch_sfq.c:499) sch_sfq
[ 88.810411] sfq_reset (net/sched/sch_sfq.c:525) sch_sfq
[ 88.810671] qdisc_reset (./include/linux/skbuff.h:2135 ./include/linux/skbuff.h:2441 ./include/linux/skbuff.h:3304 ./include/linux/skbuff.h:3310 net/sched/sch_g
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix system hang while resume with TBT monitor
[Why]
Connected with a Thunderbolt monitor and do the suspend and the system
may hang while resume.
The TBT monitor HPD will be triggered during the resume procedure
and call the drm_client_modeset_probe() while
struct drm_connector connector->dev->master is NULL.
It will mess up the pipe topology after resume.
[How]
Skip the TBT monitor HPD during the resume procedure because we
currently will probe the connectors after resume by default.
(cherry picked from commit 453f86a26945207a16b8f66aaed5962dc2b95b85) |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix NULL deref in mlx5e_tir_builder_alloc()
In mlx5e_tir_builder_alloc() kvzalloc() may return NULL
which is dereferenced on the next line in a reference
to the modify field.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
gso: fix udp gso fraglist segmentation after pull from frag_list
Detect gso fraglist skbs with corrupted geometry (see below) and
pass these to skb_segment instead of skb_segment_list, as the first
can segment them correctly.
Valid SKB_GSO_FRAGLIST skbs
- consist of two or more segments
- the head_skb holds the protocol headers plus first gso_size
- one or more frag_list skbs hold exactly one segment
- all but the last must be gso_size
Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can
modify these skbs, breaking these invariants.
In extreme cases they pull all data into skb linear. For UDP, this
causes a NULL ptr deref in __udpv4_gso_segment_list_csum at
udp_hdr(seg->next)->dest.
Detect invalid geometry due to pull, by checking head_skb size.
Don't just drop, as this may blackhole a destination. Convert to be
able to pass to regular skb_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: check null return of ACPI_ALLOCATE_ZEROED() in acpi_db_convert_to_package()
ACPICA commit 4d4547cf13cca820ff7e0f859ba83e1a610b9fd0
ACPI_ALLOCATE_ZEROED() may fail, elements might be NULL and will cause
NULL pointer dereference later.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix null-ptr-deref when journal load failed.
During the mounting process, if journal_reset() fails because of too short
journal, then lead to jbd2_journal_load() fails with NULL j_sb_buffer.
Subsequently, ocfs2_journal_shutdown() calls
jbd2_journal_flush()->jbd2_cleanup_journal_tail()->
__jbd2_update_log_tail()->jbd2_journal_update_sb_log_tail()
->lock_buffer(journal->j_sb_buffer), resulting in a null-pointer
dereference error.
To resolve this issue, we should check the JBD2_LOADED flag to ensure the
journal was properly loaded. Additionally, use journal instead of
osb->journal directly to simplify the code. |
| In the Linux kernel, the following vulnerability has been resolved:
net: avoid potential underflow in qdisc_pkt_len_init() with UFO
After commit 7c6d2ecbda83 ("net: be more gentle about silly gso
requests coming from user") virtio_net_hdr_to_skb() had sanity check
to detect malicious attempts from user space to cook a bad GSO packet.
Then commit cf9acc90c80ec ("net: virtio_net_hdr_to_skb: count
transport header in UFO") while fixing one issue, allowed user space
to cook a GSO packet with the following characteristic :
IPv4 SKB_GSO_UDP, gso_size=3, skb->len = 28.
When this packet arrives in qdisc_pkt_len_init(), we end up
with hdr_len = 28 (IPv4 header + UDP header), matching skb->len
Then the following sets gso_segs to 0 :
gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
shinfo->gso_size);
Then later we set qdisc_skb_cb(skb)->pkt_len to back to zero :/
qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
This leads to the following crash in fq_codel [1]
qdisc_pkt_len_init() is best effort, we only want an estimation
of the bytes sent on the wire, not crashing the kernel.
This patch is fixing this particular issue, a following one
adds more sanity checks for another potential bug.
[1]
[ 70.724101] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 70.724561] #PF: supervisor read access in kernel mode
[ 70.724561] #PF: error_code(0x0000) - not-present page
[ 70.724561] PGD 10ac61067 P4D 10ac61067 PUD 107ee2067 PMD 0
[ 70.724561] Oops: Oops: 0000 [#1] SMP NOPTI
[ 70.724561] CPU: 11 UID: 0 PID: 2163 Comm: b358537762 Not tainted 6.11.0-virtme #991
[ 70.724561] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.724561] RIP: 0010:fq_codel_enqueue (net/sched/sch_fq_codel.c:120 net/sched/sch_fq_codel.c:168 net/sched/sch_fq_codel.c:230) sch_fq_codel
[ 70.724561] Code: 24 08 49 c1 e1 06 44 89 7c 24 18 45 31 ed 45 31 c0 31 ff 89 44 24 14 4c 03 8b 90 01 00 00 eb 04 39 ca 73 37 4d 8b 39 83 c7 01 <49> 8b 17 49 89 11 41 8b 57 28 45 8b 5f 34 49 c7 07 00 00 00 00 49
All code
========
0: 24 08 and $0x8,%al
2: 49 c1 e1 06 shl $0x6,%r9
6: 44 89 7c 24 18 mov %r15d,0x18(%rsp)
b: 45 31 ed xor %r13d,%r13d
e: 45 31 c0 xor %r8d,%r8d
11: 31 ff xor %edi,%edi
13: 89 44 24 14 mov %eax,0x14(%rsp)
17: 4c 03 8b 90 01 00 00 add 0x190(%rbx),%r9
1e: eb 04 jmp 0x24
20: 39 ca cmp %ecx,%edx
22: 73 37 jae 0x5b
24: 4d 8b 39 mov (%r9),%r15
27: 83 c7 01 add $0x1,%edi
2a:* 49 8b 17 mov (%r15),%rdx <-- trapping instruction
2d: 49 89 11 mov %rdx,(%r9)
30: 41 8b 57 28 mov 0x28(%r15),%edx
34: 45 8b 5f 34 mov 0x34(%r15),%r11d
38: 49 c7 07 00 00 00 00 movq $0x0,(%r15)
3f: 49 rex.WB
Code starting with the faulting instruction
===========================================
0: 49 8b 17 mov (%r15),%rdx
3: 49 89 11 mov %rdx,(%r9)
6: 41 8b 57 28 mov 0x28(%r15),%edx
a: 45 8b 5f 34 mov 0x34(%r15),%r11d
e: 49 c7 07 00 00 00 00 movq $0x0,(%r15)
15: 49 rex.WB
[ 70.724561] RSP: 0018:ffff95ae85e6fb90 EFLAGS: 00000202
[ 70.724561] RAX: 0000000002000000 RBX: ffff95ae841de000 RCX: 0000000000000000
[ 70.724561] RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001
[ 70.724561] RBP: ffff95ae85e6fbf8 R08: 0000000000000000 R09: ffff95b710a30000
[ 70.724561] R10: 0000000000000000 R11: bdf289445ce31881 R12: ffff95ae85e6fc58
[ 70.724561] R13: 0000000000000000 R14: 0000000000000040 R15: 0000000000000000
[ 70.724561] FS: 000000002c5c1380(0000) GS:ffff95bd7fcc0000(0000) knlGS:0000000000000000
[ 70.724561] CS: 0010 DS: 0000 ES: 0000 C
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add null check for top_pipe_to_program in commit_planes_for_stream
This commit addresses a null pointer dereference issue in the
`commit_planes_for_stream` function at line 4140. The issue could occur
when `top_pipe_to_program` is null.
The fix adds a check to ensure `top_pipe_to_program` is not null before
accessing its stream_res. This prevents a null pointer dereference.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/core/dc.c:4140 commit_planes_for_stream() error: we previously assumed 'top_pipe_to_program' could be null (see line 3906) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Handle null 'stream_status' in 'planes_changed_for_existing_stream'
This commit adds a null check for 'stream_status' in the function
'planes_changed_for_existing_stream'. Previously, the code assumed
'stream_status' could be null, but did not handle the case where it was
actually null. This could lead to a null pointer dereference.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/core/dc_resource.c:3784 planes_changed_for_existing_stream() error: we previously assumed 'stream_status' could be null (see line 3774) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check null pointers before using dc->clk_mgr
[WHY & HOW]
dc->clk_mgr is null checked previously in the same function, indicating
it might be null.
Passing "dc" to "dc->hwss.apply_idle_power_optimizations", which
dereferences null "dc->clk_mgr". (The function pointer resolves to
"dcn35_apply_idle_power_optimizations".)
This fixes 1 FORWARD_NULL issue reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add null check for 'afb' in amdgpu_dm_plane_handle_cursor_update (v2)
This commit adds a null check for the 'afb' variable in the
amdgpu_dm_plane_handle_cursor_update function. Previously, 'afb' was
assumed to be null, but was used later in the code without a null check.
This could potentially lead to a null pointer dereference.
Changes since v1:
- Moved the null check for 'afb' to the line where 'afb' is used. (Alex)
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm_plane.c:1298 amdgpu_dm_plane_handle_cursor_update() error: we previously assumed 'afb' could be null (see line 1252) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check stream before comparing them
[WHAT & HOW]
amdgpu_dm can pass a null stream to dc_is_stream_unchanged. It is
necessary to check for null before dereferencing them.
This fixes 1 FORWARD_NULL issue reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: ensure the fw_info is not null before using it
This resolves the dereference null return value warning
reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: update orig_path in ext4_find_extent()
In ext4_find_extent(), if the path is not big enough, we free it and set
*orig_path to NULL. But after reallocating and successfully initializing
the path, we don't update *orig_path, in which case the caller gets a
valid path but a NULL ppath, and this may cause a NULL pointer dereference
or a path memory leak. For example:
ext4_split_extent
path = *ppath = 2000
ext4_find_extent
if (depth > path[0].p_maxdepth)
kfree(path = 2000);
*orig_path = path = NULL;
path = kcalloc() = 3000
ext4_split_extent_at(*ppath = NULL)
path = *ppath;
ex = path[depth].p_ext;
// NULL pointer dereference!
==================================================================
BUG: kernel NULL pointer dereference, address: 0000000000000010
CPU: 6 UID: 0 PID: 576 Comm: fsstress Not tainted 6.11.0-rc2-dirty #847
RIP: 0010:ext4_split_extent_at+0x6d/0x560
Call Trace:
<TASK>
ext4_split_extent.isra.0+0xcb/0x1b0
ext4_ext_convert_to_initialized+0x168/0x6c0
ext4_ext_handle_unwritten_extents+0x325/0x4d0
ext4_ext_map_blocks+0x520/0xdb0
ext4_map_blocks+0x2b0/0x690
ext4_iomap_begin+0x20e/0x2c0
[...]
==================================================================
Therefore, *orig_path is updated when the extent lookup succeeds, so that
the caller can safely use path or *ppath. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: omapdrm: Add missing check for alloc_ordered_workqueue
As it may return NULL pointer and cause NULL pointer dereference. Add check
for the return value of alloc_ordered_workqueue. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix possible null-ptr-deref in ocfs2_set_buffer_uptodate
When doing cleanup, if flags without OCFS2_BH_READAHEAD, it may trigger
NULL pointer dereference in the following ocfs2_set_buffer_uptodate() if
bh is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: adp5589-keys - fix NULL pointer dereference
We register a devm action to call adp5589_clear_config() and then pass
the i2c client as argument so that we can call i2c_get_clientdata() in
order to get our device object. However, i2c_set_clientdata() is only
being set at the end of the probe function which means that we'll get a
NULL pointer dereference in case the probe function fails early. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost/scsi: null-ptr-dereference in vhost_scsi_get_req()
Since commit 3f8ca2e115e5 ("vhost/scsi: Extract common handling code
from control queue handler") a null pointer dereference bug can be
triggered when guest sends an SCSI AN request.
In vhost_scsi_ctl_handle_vq(), `vc.target` is assigned with
`&v_req.tmf.lun[1]` within a switch-case block and is then passed to
vhost_scsi_get_req() which extracts `vc->req` and `tpg`. However, for
a `VIRTIO_SCSI_T_AN_*` request, tpg is not required, so `vc.target` is
set to NULL in this branch. Later, in vhost_scsi_get_req(),
`vc->target` is dereferenced without being checked, leading to a null
pointer dereference bug. This bug can be triggered from guest.
When this bug occurs, the vhost_worker process is killed while holding
`vq->mutex` and the corresponding tpg will remain occupied
indefinitely.
Below is the KASAN report:
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 840 Comm: poc Not tainted 6.10.0+ #1
Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS
1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:vhost_scsi_get_req+0x165/0x3a0
Code: 00 fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 2b 02 00 00
48 b8 00 00 00 00 00 fc ff df 4d 8b 65 30 4c 89 e2 48 c1 ea 03 <0f> b6
04 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 be 01 00 00
RSP: 0018:ffff888017affb50 EFLAGS: 00010246
RAX: dffffc0000000000 RBX: ffff88801b000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888017affcb8
RBP: ffff888017affb80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff888017affc88 R14: ffff888017affd1c R15: ffff888017993000
FS: 000055556e076500(0000) GS:ffff88806b100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200027c0 CR3: 0000000010ed0004 CR4: 0000000000370ef0
Call Trace:
<TASK>
? show_regs+0x86/0xa0
? die_addr+0x4b/0xd0
? exc_general_protection+0x163/0x260
? asm_exc_general_protection+0x27/0x30
? vhost_scsi_get_req+0x165/0x3a0
vhost_scsi_ctl_handle_vq+0x2a4/0xca0
? __pfx_vhost_scsi_ctl_handle_vq+0x10/0x10
? __switch_to+0x721/0xeb0
? __schedule+0xda5/0x5710
? __kasan_check_write+0x14/0x30
? _raw_spin_lock+0x82/0xf0
vhost_scsi_ctl_handle_kick+0x52/0x90
vhost_run_work_list+0x134/0x1b0
vhost_task_fn+0x121/0x350
...
</TASK>
---[ end trace 0000000000000000 ]---
Let's add a check in vhost_scsi_get_req.
[whitespace fixes] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: correctly handle malformed BPF_CORE_TYPE_ID_LOCAL relos
In case of malformed relocation record of kind BPF_CORE_TYPE_ID_LOCAL
referencing a non-existing BTF type, function bpf_core_calc_relo_insn
would cause a null pointer deference.
Fix this by adding a proper check upper in call stack, as malformed
relocation records could be passed from user space.
Simplest reproducer is a program:
r0 = 0
exit
With a single relocation record:
.insn_off = 0, /* patch first instruction */
.type_id = 100500, /* this type id does not exist */
.access_str_off = 6, /* offset of string "0" */
.kind = BPF_CORE_TYPE_ID_LOCAL,
See the link for original reproducer or next commit for a test case. |
| GStreamer is a library for constructing graphs of media-handling components. A null pointer dereference vulnerability has been detected in the parse_lrc function within gstsubparse.c. The parse_lrc function calls strchr() to find the character ']' in the string line. The pointer returned by this call is then passed to g_strdup(). However, if the string line does not contain the character ']', strchr() returns NULL, and a call to g_strdup(start + 1) leads to a null pointer dereference. This vulnerability is fixed in 1.24.10. |