| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
|
NVIDIA CUDA toolkit for all platforms contains a vulnerability in cuobjdump and nvdisasm where an attacker may cause a crash by tricking a user into reading a malformed ELF file. A successful exploit of this vulnerability may lead to a partial denial of service.
|
|
NVIDIA CUDA toolkit for all platforms contains a vulnerability in cuobjdump and nvdisasm where an attacker may cause a crash by tricking a user into reading a malformed ELF file. A successful exploit of this vulnerability may lead to a partial denial of service.
|
| NVIDIA CUDA toolkit for Linux and Windows contains a vulnerability in the cuobjdump binary, where a user could cause a crash by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability might lead to a partial denial of service. |
| NVIDIA CUDA toolkit for Linux and Windows contains a vulnerability in the cuobjdump binary, where a user could cause a crash by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability might lead to a partial denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: dw-edma: HDMA: Add sync read before starting the DMA transfer in remote setup
The Linked list element and pointer are not stored in the same memory as
the HDMA controller register. If the doorbell register is toggled before
the full write of the linked list a race condition error will occur.
In remote setup we can only use a readl to the memory to assure the full
write has occurred. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: dw-edma: eDMA: Add sync read before starting the DMA transfer in remote setup
The Linked list element and pointer are not stored in the same memory as
the eDMA controller register. If the doorbell register is toggled before
the full write of the linked list a race condition error will occur.
In remote setup we can only use a readl to the memory to assure the full
write has occurred. |
| In the Linux kernel, the following vulnerability has been resolved:
lib/Kconfig.debug: TEST_IOV_ITER depends on MMU
Trying to run the iov_iter unit test on a nommu system such as the qemu
kc705-nommu emulation results in a crash.
KTAP version 1
# Subtest: iov_iter
# module: kunit_iov_iter
1..9
BUG: failure at mm/nommu.c:318/vmap()!
Kernel panic - not syncing: BUG!
The test calls vmap() directly, but vmap() is not supported on nommu
systems, causing the crash. TEST_IOV_ITER therefore needs to depend on
MMU. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix data races on remote_id
Similar to the previous patch, address the data race on
remote_id, adding the suitable ONCE annotations. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_flow_offload: reset dst in route object after setting up flow
dst is transferred to the flow object, route object does not own it
anymore. Reset dst in route object, otherwise if flow_offload_add()
fails, error path releases dst twice, leading to a refcount underflow. |
| In the Linux kernel, the following vulnerability has been resolved:
phonet/pep: fix racy skb_queue_empty() use
The receive queues are protected by their respective spin-lock, not
the socket lock. This could lead to skb_peek() unexpectedly
returning NULL or a pointer to an already dequeued socket buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/amd/pm: resolve reboot exception for si oland"
This reverts commit e490d60a2f76bff636c68ce4fe34c1b6c34bbd86.
This causes hangs on SI when DC is enabled and errors on driver
reboot and power off cycles. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/af_unix: disable sending io_uring over sockets
File reference cycles have caused lots of problems for io_uring
in the past, and it still doesn't work exactly right and races with
unix_stream_read_generic(). The safest fix would be to completely
disallow sending io_uring files via sockets via SCM_RIGHT, so there
are no possible cycles invloving registered files and thus rendering
SCM accounting on the io_uring side unnecessary. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio: packed: fix unmap leak for indirect desc table
When use_dma_api and premapped are true, then the do_unmap is false.
Because the do_unmap is false, vring_unmap_extra_packed is not called by
detach_buf_packed.
if (unlikely(vq->do_unmap)) {
curr = id;
for (i = 0; i < state->num; i++) {
vring_unmap_extra_packed(vq,
&vq->packed.desc_extra[curr]);
curr = vq->packed.desc_extra[curr].next;
}
}
So the indirect desc table is not unmapped. This causes the unmap leak.
So here, we check vq->use_dma_api instead. Synchronously, dma info is
updated based on use_dma_api judgment
This bug does not occur, because no driver use the premapped with
indirect. |
| In the Linux kernel, the following vulnerability has been resolved:
xen/evtchn: avoid WARN() when unbinding an event channel
When unbinding a user event channel, the related handler might be
called a last time in case the kernel was built with
CONFIG_DEBUG_SHIRQ. This might cause a WARN() in the handler.
Avoid that by adding an "unbinding" flag to struct user_event which
will short circuit the handler. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: relax WARN_ON in ovl_verify_area()
syzbot hit an assertion in copy up data loop which looks like it is
the result of a lower file whose size is being changed underneath
overlayfs.
This type of use case is documented to cause undefined behavior, so
returning EIO error for the copy up makes sense, but it should not be
causing a WARN_ON assertion. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when detecting delalloc ranges during fiemap
For fiemap we recently stopped locking the target extent range for the
whole duration of the fiemap call, in order to avoid a deadlock in a
scenario where the fiemap buffer happens to be a memory mapped range of
the same file. This use case is very unlikely to be useful in practice but
it may be triggered by fuzz testing (syzbot, etc).
This however introduced a race that makes us miss delalloc ranges for
file regions that are currently holes, so the caller of fiemap will not
be aware that there's data for some file regions. This can be quite
serious for some use cases - for example in coreutils versions before 9.0,
the cp program used fiemap to detect holes and data in the source file,
copying only regions with data (extents or delalloc) from the source file
to the destination file in order to preserve holes (see the documentation
for its --sparse command line option). This means that if cp was used
with a source file that had delalloc in a hole, the destination file could
end up without that data, which is effectively a data loss issue, if it
happened to hit the race described below.
The race happens like this:
1) Fiemap is called, without the FIEMAP_FLAG_SYNC flag, for a file that
has delalloc in the file range [64M, 65M[, which is currently a hole;
2) Fiemap locks the inode in shared mode, then starts iterating the
inode's subvolume tree searching for file extent items, without having
the whole fiemap target range locked in the inode's io tree - the
change introduced recently by commit b0ad381fa769 ("btrfs: fix
deadlock with fiemap and extent locking"). It only locks ranges in
the io tree when it finds a hole or prealloc extent since that
commit;
3) Note that fiemap clones each leaf before using it, and this is to
avoid deadlocks when locking a file range in the inode's io tree and
the fiemap buffer is memory mapped to some file, because writing
to the page with btrfs_page_mkwrite() will wait on any ordered extent
for the page's range and the ordered extent needs to lock the range
and may need to modify the same leaf, therefore leading to a deadlock
on the leaf;
4) While iterating the file extent items in the cloned leaf before
finding the hole in the range [64M, 65M[, the delalloc in that range
is flushed and its ordered extent completes - meaning the corresponding
file extent item is in the inode's subvolume tree, but not present in
the cloned leaf that fiemap is iterating over;
5) When fiemap finds the hole in the [64M, 65M[ range by seeing the gap in
the cloned leaf (or a file extent item with disk_bytenr == 0 in case
the NO_HOLES feature is not enabled), it will lock that file range in
the inode's io tree and then search for delalloc by checking for the
EXTENT_DELALLOC bit in the io tree for that range and ordered extents
(with btrfs_find_delalloc_in_range()). But it finds nothing since the
delalloc in that range was already flushed and the ordered extent
completed and is gone - as a result fiemap will not report that there's
delalloc or an extent for the range [64M, 65M[, so user space will be
mislead into thinking that there's a hole in that range.
This could actually be sporadically triggered with test case generic/094
from fstests, which reports a missing extent/delalloc range like this:
generic/094 2s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad)
--- tests/generic/094.out 2020-06-10 19:29:03.830519425 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad 2024-02-28 11:00:00.381071525 +0000
@@ -1,3 +1,9 @@
QA output created by 094
fiemap run with sync
fiemap run without sync
+ERROR: couldn't find extent at 7
+map is 'HHDDHPPDPHPH'
+logical: [ 5.. 6] phys:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
pstore: inode: Only d_invalidate() is needed
Unloading a modular pstore backend with records in pstorefs would
trigger the dput() double-drop warning:
WARNING: CPU: 0 PID: 2569 at fs/dcache.c:762 dput.part.0+0x3f3/0x410
Using the combo of d_drop()/dput() (as mentioned in
Documentation/filesystems/vfs.rst) isn't the right approach here, and
leads to the reference counting problem seen above. Use d_invalidate()
and update the code to not bother checking for error codes that can
never happen.
--- |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix page frag corruption on page fault
Steffen reported a TCP stream corruption for HTTP requests
served by the apache web-server using a cifs mount-point
and memory mapping the relevant file.
The root cause is quite similar to the one addressed by
commit 20eb4f29b602 ("net: fix sk_page_frag() recursion from
memory reclaim"). Here the nested access to the task page frag
is caused by a page fault on the (mmapped) user-space memory
buffer coming from the cifs file.
The page fault handler performs an smb transaction on a different
socket, inside the same process context. Since sk->sk_allaction
for such socket does not prevent the usage for the task_frag,
the nested allocation modify "under the hood" the page frag
in use by the outer sendmsg call, corrupting the stream.
The overall relevant stack trace looks like the following:
httpd 78268 [001] 3461630.850950: probe:tcp_sendmsg_locked:
ffffffff91461d91 tcp_sendmsg_locked+0x1
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139814e sock_sendmsg+0x3e
ffffffffc06dfe1d smb_send_kvec+0x28
[...]
ffffffffc06cfaf8 cifs_readpages+0x213
ffffffff90e83c4b read_pages+0x6b
ffffffff90e83f31 __do_page_cache_readahead+0x1c1
ffffffff90e79e98 filemap_fault+0x788
ffffffff90eb0458 __do_fault+0x38
ffffffff90eb5280 do_fault+0x1a0
ffffffff90eb7c84 __handle_mm_fault+0x4d4
ffffffff90eb8093 handle_mm_fault+0xc3
ffffffff90c74f6d __do_page_fault+0x1ed
ffffffff90c75277 do_page_fault+0x37
ffffffff9160111e page_fault+0x1e
ffffffff9109e7b5 copyin+0x25
ffffffff9109eb40 _copy_from_iter_full+0xe0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139815c sock_sendmsg+0x4c
ffffffff913981f7 sock_write_iter+0x97
ffffffff90f2cc56 do_iter_readv_writev+0x156
ffffffff90f2dff0 do_iter_write+0x80
ffffffff90f2e1c3 vfs_writev+0xa3
ffffffff90f2e27c do_writev+0x5c
ffffffff90c042bb do_syscall_64+0x5b
ffffffff916000ad entry_SYSCALL_64_after_hwframe+0x65
The cifs filesystem rightfully sets sk_allocations to GFP_NOFS,
we can avoid the nesting using the sk page frag for allocation
lacking the __GFP_FS flag. Do not define an additional mm-helper
for that, as this is strictly tied to the sk page frag usage.
v1 -> v2:
- use a stricted sk_page_frag() check instead of reordering the
code (Eric) |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: remove one synchronize_net() barrier in ipv6_mc_down()
As discussed in the past (commit 2d3916f31891 ("ipv6: fix skb drops
in igmp6_event_query() and igmp6_event_report()")) I think the
synchronize_net() call in ipv6_mc_down() is not needed.
Under load, synchronize_net() can last between 200 usec and 5 ms.
KASAN seems to agree as well. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: do not realloc workqueue everytime an interface is added
Commit 09ed8bfc5215 ("wilc1000: Rename workqueue from "WILC_wq" to
"NETDEV-wq"") moved workqueue creation in wilc_netdev_ifc_init in order to
set the interface name in the workqueue name. However, while the driver
needs only one workqueue, the wilc_netdev_ifc_init is called each time we
add an interface over a phy, which in turns overwrite the workqueue with a
new one. This can be observed with the following commands:
for i in $(seq 0 10)
do
iw phy phy0 interface add wlan1 type managed
iw dev wlan1 del
done
ps -eo pid,comm|grep wlan
39 kworker/R-wlan0
98 kworker/R-wlan1
102 kworker/R-wlan1
105 kworker/R-wlan1
108 kworker/R-wlan1
111 kworker/R-wlan1
114 kworker/R-wlan1
117 kworker/R-wlan1
120 kworker/R-wlan1
123 kworker/R-wlan1
126 kworker/R-wlan1
129 kworker/R-wlan1
Fix this leakage by putting back hif_workqueue allocation in
wilc_cfg80211_init. Regarding the workqueue name, it is indeed relevant to
set it lowercase, however it is not attached to a specific netdev, so
enforcing netdev name in the name is not so relevant. Still, enrich the
name with the wiphy name to make it clear which phy is using the workqueue. |