| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix information leakage in /proc/net/ptype
In one net namespace, after creating a packet socket without binding
it to a device, users in other net namespaces can observe the new
`packet_type` added by this packet socket by reading `/proc/net/ptype`
file. This is minor information leakage as packet socket is
namespace aware.
Add a net pointer in `packet_type` to keep the net namespace of
of corresponding packet socket. In `ptype_seq_show`, this net pointer
must be checked when it is not NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: ca8210: Stop leaking skb's
Upon error the ieee802154_xmit_complete() helper is not called. Only
ieee802154_wake_queue() is called manually. We then leak the skb
structure.
Free the skb structure upon error before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Use VM_MAP instead of VM_ALLOC for ringbuf
After commit 2fd3fb0be1d1 ("kasan, vmalloc: unpoison VM_ALLOC pages
after mapping"), non-VM_ALLOC mappings will be marked as accessible
in __get_vm_area_node() when KASAN is enabled. But now the flag for
ringbuf area is VM_ALLOC, so KASAN will complain out-of-bound access
after vmap() returns. Because the ringbuf area is created by mapping
allocated pages, so use VM_MAP instead.
After the change, info in /proc/vmallocinfo also changes from
[start]-[end] 24576 ringbuf_map_alloc+0x171/0x290 vmalloc user
to
[start]-[end] 24576 ringbuf_map_alloc+0x171/0x290 vmap user |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel/pt: Fix crash with stop filters in single-range mode
Add a check for !buf->single before calling pt_buffer_region_size in a
place where a missing check can cause a kernel crash.
Fixes a bug introduced by commit 670638477aed ("perf/x86/intel/pt:
Opportunistically use single range output mode"), which added a
support for PT single-range output mode. Since that commit if a PT
stop filter range is hit while tracing, the kernel will crash because
of a null pointer dereference in pt_handle_status due to calling
pt_buffer_region_size without a ToPA configured.
The commit which introduced single-range mode guarded almost all uses of
the ToPA buffer variables with checks of the buf->single variable, but
missed the case where tracing was stopped by the PT hardware, which
happens when execution hits a configured stop filter.
Tested that hitting a stop filter while PT recording successfully
records a trace with this patch but crashes without this patch. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: improve size validations for received domain records
The function tipc_mon_rcv() allows a node to receive and process
domain_record structs from peer nodes to track their views of the
network topology.
This patch verifies that the number of members in a received domain
record does not exceed the limit defined by MAX_MON_DOMAIN, something
that may otherwise lead to a stack overflow.
tipc_mon_rcv() is called from the function tipc_link_proto_rcv(), where
we are reading a 32 bit message data length field into a uint16. To
avert any risk of bit overflow, we add an extra sanity check for this in
that function. We cannot see that happen with the current code, but
future designers being unaware of this risk, may introduce it by
allowing delivery of very large (> 64k) sk buffers from the bearer
layer. This potential problem was identified by Eric Dumazet.
This fixes CVE-2022-0435 |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: 9170/1: fix panic when kasan and kprobe are enabled
arm32 uses software to simulate the instruction replaced
by kprobe. some instructions may be simulated by constructing
assembly functions. therefore, before executing instruction
simulation, it is necessary to construct assembly function
execution environment in C language through binding registers.
after kasan is enabled, the register binding relationship will
be destroyed, resulting in instruction simulation errors and
causing kernel panic.
the kprobe emulate instruction function is distributed in three
files: actions-common.c actions-arm.c actions-thumb.c, so disable
KASAN when compiling these files.
for example, use kprobe insert on cap_capable+20 after kasan
enabled, the cap_capable assembly code is as follows:
<cap_capable>:
e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr}
e1a05000 mov r5, r0
e280006c add r0, r0, #108 ; 0x6c
e1a04001 mov r4, r1
e1a06002 mov r6, r2
e59fa090 ldr sl, [pc, #144] ;
ebfc7bf8 bl c03aa4b4 <__asan_load4>
e595706c ldr r7, [r5, #108] ; 0x6c
e2859014 add r9, r5, #20
......
The emulate_ldr assembly code after enabling kasan is as follows:
c06f1384 <emulate_ldr>:
e92d47f0 push {r4, r5, r6, r7, r8, r9, sl, lr}
e282803c add r8, r2, #60 ; 0x3c
e1a05000 mov r5, r0
e7e37855 ubfx r7, r5, #16, #4
e1a00008 mov r0, r8
e1a09001 mov r9, r1
e1a04002 mov r4, r2
ebf35462 bl c03c6530 <__asan_load4>
e357000f cmp r7, #15
e7e36655 ubfx r6, r5, #12, #4
e205a00f and sl, r5, #15
0a000001 beq c06f13bc <emulate_ldr+0x38>
e0840107 add r0, r4, r7, lsl #2
ebf3545c bl c03c6530 <__asan_load4>
e084010a add r0, r4, sl, lsl #2
ebf3545a bl c03c6530 <__asan_load4>
e2890010 add r0, r9, #16
ebf35458 bl c03c6530 <__asan_load4>
e5990010 ldr r0, [r9, #16]
e12fff30 blx r0
e356000f cm r6, #15
1a000014 bne c06f1430 <emulate_ldr+0xac>
e1a06000 mov r6, r0
e2840040 add r0, r4, #64 ; 0x40
......
when running in emulate_ldr to simulate the ldr instruction, panic
occurred, and the log is as follows:
Unable to handle kernel NULL pointer dereference at virtual address
00000090
pgd = ecb46400
[00000090] *pgd=2e0fa003, *pmd=00000000
Internal error: Oops: 206 [#1] SMP ARM
PC is at cap_capable+0x14/0xb0
LR is at emulate_ldr+0x50/0xc0
psr: 600d0293 sp : ecd63af8 ip : 00000004 fp : c0a7c30c
r10: 00000000 r9 : c30897f4 r8 : ecd63cd4
r7 : 0000000f r6 : 0000000a r5 : e59fa090 r4 : ecd63c98
r3 : c06ae294 r2 : 00000000 r1 : b7611300 r0 : bf4ec008
Flags: nZCv IRQs off FIQs on Mode SVC_32 ISA ARM Segment user
Control: 32c5387d Table: 2d546400 DAC: 55555555
Process bash (pid: 1643, stack limit = 0xecd60190)
(cap_capable) from (kprobe_handler+0x218/0x340)
(kprobe_handler) from (kprobe_trap_handler+0x24/0x48)
(kprobe_trap_handler) from (do_undefinstr+0x13c/0x364)
(do_undefinstr) from (__und_svc_finish+0x0/0x30)
(__und_svc_finish) from (cap_capable+0x18/0xb0)
(cap_capable) from (cap_vm_enough_memory+0x38/0x48)
(cap_vm_enough_memory) from
(security_vm_enough_memory_mm+0x48/0x6c)
(security_vm_enough_memory_mm) from
(copy_process.constprop.5+0x16b4/0x25c8)
(copy_process.constprop.5) from (_do_fork+0xe8/0x55c)
(_do_fork) from (SyS_clone+0x1c/0x24)
(SyS_clone) from (__sys_trace_return+0x0/0x10)
Code: 0050a0e1 6c0080e2 0140a0e1 0260a0e1 (f801f0e7) |
| In the Linux kernel, the following vulnerability has been resolved:
m68k: Fix spinlock race in kernel thread creation
Context switching does take care to retain the correct lock owner across
the switch from 'prev' to 'next' tasks. This does rely on interrupts
remaining disabled for the entire duration of the switch.
This condition is guaranteed for normal process creation and context
switching between already running processes, because both 'prev' and
'next' already have interrupts disabled in their saved copies of the
status register.
The situation is different for newly created kernel threads. The status
register is set to PS_S in copy_thread(), which does leave the IPL at 0.
Upon restoring the 'next' thread's status register in switch_to() aka
resume(), interrupts then become enabled prematurely. resume() then
returns via ret_from_kernel_thread() and schedule_tail() where run queue
lock is released (see finish_task_switch() and finish_lock_switch()).
A timer interrupt calling scheduler_tick() before the lock is released
in finish_task_switch() will find the lock already taken, with the
current task as lock owner. This causes a spinlock recursion warning as
reported by Guenter Roeck.
As far as I can ascertain, this race has been opened in commit
533e6903bea0 ("m68k: split ret_from_fork(), simplify kernel_thread()")
but I haven't done a detailed study of kernel history so it may well
predate that commit.
Interrupts cannot be disabled in the saved status register copy for
kernel threads (init will complain about interrupts disabled when
finally starting user space). Disable interrupts temporarily when
switching the tasks' register sets in resume().
Note that a simple oriw 0x700,%sr after restoring sr is not enough here
- this leaves enough of a race for the 'spinlock recursion' warning to
still be observed.
Tested on ARAnyM and qemu (Quadra 800 emulation). |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/virt/acrn: fix PFNMAP PTE checks in acrn_vm_ram_map()
Patch series "mm: follow_pte() improvements and acrn follow_pte() fixes".
Patch #1 fixes a bunch of issues I spotted in the acrn driver. It
compiles, that's all I know. I'll appreciate some review and testing from
acrn folks.
Patch #2+#3 improve follow_pte(), passing a VMA instead of the MM, adding
more sanity checks, and improving the documentation. Gave it a quick test
on x86-64 using VM_PAT that ends up using follow_pte().
This patch (of 3):
We currently miss handling various cases, resulting in a dangerous
follow_pte() (previously follow_pfn()) usage.
(1) We're not checking PTE write permissions.
Maybe we should simply always require pte_write() like we do for
pin_user_pages_fast(FOLL_WRITE)? Hard to tell, so let's check for
ACRN_MEM_ACCESS_WRITE for now.
(2) We're not rejecting refcounted pages.
As we are not using MMU notifiers, messing with refcounted pages is
dangerous and can result in use-after-free. Let's make sure to reject them.
(3) We are only looking at the first PTE of a bigger range.
We only lookup a single PTE, but memmap->len may span a larger area.
Let's loop over all involved PTEs and make sure the PFN range is
actually contiguous. Reject everything else: it couldn't have worked
either way, and rather made use access PFNs we shouldn't be accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ti: j721e-csi2rx: Fix races while restarting DMA
After the frame is submitted to DMA, it may happen that the submitted
list is not updated soon enough, and the DMA callback is triggered
before that.
This can lead to kernel crashes, so move everything in a single
lock/unlock section to prevent such races. |
| In the Linux kernel, the following vulnerability has been resolved:
dma-mapping: benchmark: fix node id validation
While validating node ids in map_benchmark_ioctl(), node_possible() may
be provided with invalid argument outside of [0,MAX_NUMNODES-1] range
leading to:
BUG: KASAN: wild-memory-access in map_benchmark_ioctl (kernel/dma/map_benchmark.c:214)
Read of size 8 at addr 1fffffff8ccb6398 by task dma_map_benchma/971
CPU: 7 PID: 971 Comm: dma_map_benchma Not tainted 6.9.0-rc6 #37
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
kasan_report (mm/kasan/report.c:603)
kasan_check_range (mm/kasan/generic.c:189)
variable_test_bit (arch/x86/include/asm/bitops.h:227) [inline]
arch_test_bit (arch/x86/include/asm/bitops.h:239) [inline]
_test_bit at (include/asm-generic/bitops/instrumented-non-atomic.h:142) [inline]
node_state (include/linux/nodemask.h:423) [inline]
map_benchmark_ioctl (kernel/dma/map_benchmark.c:214)
full_proxy_unlocked_ioctl (fs/debugfs/file.c:333)
__x64_sys_ioctl (fs/ioctl.c:890)
do_syscall_64 (arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Compare node ids with sane bounds first. NUMA_NO_NODE is considered a
special valid case meaning that benchmarking kthreads won't be bound to a
cpuset of a given node.
Found by Linux Verification Center (linuxtesting.org). |
| In the Linux kernel, the following vulnerability has been resolved:
soundwire: cadence: fix invalid PDI offset
For some reason, we add an offset to the PDI, presumably to skip the
PDI0 and PDI1 which are reserved for BPT.
This code is however completely wrong and leads to an out-of-bounds
access. We were just lucky so far since we used only a couple of PDIs
and remained within the PDI array bounds.
A Fixes: tag is not provided since there are no known platforms where
the out-of-bounds would be accessed, and the initial code had problems
as well.
A follow-up patch completely removes this useless offset. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add callback function pointer check before its call
In dpu_core_irq_callback_handler() callback function pointer is compared to NULL,
but then callback function is unconditionally called by this pointer.
Fix this bug by adding conditional return.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Patchwork: https://patchwork.freedesktop.org/patch/588237/ |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: cs35l56: Fix lifetime of cs_dsp instance
The cs_dsp instance is initialized in the driver probe() so it
should be freed in the driver remove(). Also fix a missing call
to cs_dsp_remove() in the error path of cs35l56_hda_common_probe().
The call to cs_dsp_remove() was being done in the component unbind
callback cs35l56_hda_unbind(). This meant that if the driver was
unbound and then re-bound it would be using an uninitialized cs_dsp
instance.
It is best to initialize the cs_dsp instance in probe() so that it
can return an error if it fails. The component binding API doesn't
have any error handling so there's no way to handle a failure if
cs_dsp was initialized in the bind. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: asm-bug: Add .align 2 to the end of __BUG_ENTRY
When CONFIG_DEBUG_BUGVERBOSE=n, we fail to add necessary padding bytes
to bug_table entries, and as a result the last entry in a bug table will
be ignored, potentially leading to an unexpected panic(). All prior
entries in the table will be handled correctly.
The arm64 ABI requires that struct fields of up to 8 bytes are
naturally-aligned, with padding added within a struct such that struct
are suitably aligned within arrays.
When CONFIG_DEBUG_BUGVERPOSE=y, the layout of a bug_entry is:
struct bug_entry {
signed int bug_addr_disp; // 4 bytes
signed int file_disp; // 4 bytes
unsigned short line; // 2 bytes
unsigned short flags; // 2 bytes
}
... with 12 bytes total, requiring 4-byte alignment.
When CONFIG_DEBUG_BUGVERBOSE=n, the layout of a bug_entry is:
struct bug_entry {
signed int bug_addr_disp; // 4 bytes
unsigned short flags; // 2 bytes
< implicit padding > // 2 bytes
}
... with 8 bytes total, with 6 bytes of data and 2 bytes of trailing
padding, requiring 4-byte alginment.
When we create a bug_entry in assembly, we align the start of the entry
to 4 bytes, which implicitly handles padding for any prior entries.
However, we do not align the end of the entry, and so when
CONFIG_DEBUG_BUGVERBOSE=n, the final entry lacks the trailing padding
bytes.
For the main kernel image this is not a problem as find_bug() doesn't
depend on the trailing padding bytes when searching for entries:
for (bug = __start___bug_table; bug < __stop___bug_table; ++bug)
if (bugaddr == bug_addr(bug))
return bug;
However for modules, module_bug_finalize() depends on the trailing
bytes when calculating the number of entries:
mod->num_bugs = sechdrs[i].sh_size / sizeof(struct bug_entry);
... and as the last bug_entry lacks the necessary padding bytes, this entry
will not be counted, e.g. in the case of a single entry:
sechdrs[i].sh_size == 6
sizeof(struct bug_entry) == 8;
sechdrs[i].sh_size / sizeof(struct bug_entry) == 0;
Consequently module_find_bug() will miss the last bug_entry when it does:
for (i = 0; i < mod->num_bugs; ++i, ++bug)
if (bugaddr == bug_addr(bug))
goto out;
... which can lead to a kenrel panic due to an unhandled bug.
This can be demonstrated with the following module:
static int __init buginit(void)
{
WARN(1, "hello\n");
return 0;
}
static void __exit bugexit(void)
{
}
module_init(buginit);
module_exit(bugexit);
MODULE_LICENSE("GPL");
... which will trigger a kernel panic when loaded:
------------[ cut here ]------------
hello
Unexpected kernel BRK exception at EL1
Internal error: BRK handler: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in: hello(O+)
CPU: 0 PID: 50 Comm: insmod Tainted: G O 6.9.1 #8
Hardware name: linux,dummy-virt (DT)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : buginit+0x18/0x1000 [hello]
lr : buginit+0x18/0x1000 [hello]
sp : ffff800080533ae0
x29: ffff800080533ae0 x28: 0000000000000000 x27: 0000000000000000
x26: ffffaba8c4e70510 x25: ffff800080533c30 x24: ffffaba8c4a28a58
x23: 0000000000000000 x22: 0000000000000000 x21: ffff3947c0eab3c0
x20: ffffaba8c4e3f000 x19: ffffaba846464000 x18: 0000000000000006
x17: 0000000000000000 x16: ffffaba8c2492834 x15: 0720072007200720
x14: 0720072007200720 x13: ffffaba8c49b27c8 x12: 0000000000000312
x11: 0000000000000106 x10: ffffaba8c4a0a7c8 x9 : ffffaba8c49b27c8
x8 : 00000000ffffefff x7 : ffffaba8c4a0a7c8 x6 : 80000000fffff000
x5 : 0000000000000107 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff3947c0eab3c0
Call trace:
buginit+0x18/0x1000 [hello]
do_one_initcall+0x80/0x1c8
do_init_module+0x60/0x218
load_module+0x1ba4/0x1d70
__do_sys_init_module+0x198/0x1d0
__arm64_sys_init_module+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on i_xattr_nid in sanity_check_inode()
syzbot reports a kernel bug as below:
F2FS-fs (loop0): Mounted with checkpoint version = 48b305e4
==================================================================
BUG: KASAN: slab-out-of-bounds in f2fs_test_bit fs/f2fs/f2fs.h:2933 [inline]
BUG: KASAN: slab-out-of-bounds in current_nat_addr fs/f2fs/node.h:213 [inline]
BUG: KASAN: slab-out-of-bounds in f2fs_get_node_info+0xece/0x1200 fs/f2fs/node.c:600
Read of size 1 at addr ffff88807a58c76c by task syz-executor280/5076
CPU: 1 PID: 5076 Comm: syz-executor280 Not tainted 6.9.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
f2fs_test_bit fs/f2fs/f2fs.h:2933 [inline]
current_nat_addr fs/f2fs/node.h:213 [inline]
f2fs_get_node_info+0xece/0x1200 fs/f2fs/node.c:600
f2fs_xattr_fiemap fs/f2fs/data.c:1848 [inline]
f2fs_fiemap+0x55d/0x1ee0 fs/f2fs/data.c:1925
ioctl_fiemap fs/ioctl.c:220 [inline]
do_vfs_ioctl+0x1c07/0x2e50 fs/ioctl.c:838
__do_sys_ioctl fs/ioctl.c:902 [inline]
__se_sys_ioctl+0x81/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The root cause is we missed to do sanity check on i_xattr_nid during
f2fs_iget(), so that in fiemap() path, current_nat_addr() will access
nat_bitmap w/ offset from invalid i_xattr_nid, result in triggering
kasan bug report, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: fix oops during rmmod
"rmmod bonding" causes an oops ever since commit cc317ea3d927 ("bonding:
remove redundant NULL check in debugfs function"). Here are the relevant
functions being called:
bonding_exit()
bond_destroy_debugfs()
debugfs_remove_recursive(bonding_debug_root);
bonding_debug_root = NULL; <--------- SET TO NULL HERE
bond_netlink_fini()
rtnl_link_unregister()
__rtnl_link_unregister()
unregister_netdevice_many_notify()
bond_uninit()
bond_debug_unregister()
(commit removed check for bonding_debug_root == NULL)
debugfs_remove()
simple_recursive_removal()
down_write() -> OOPS
However, reverting the bad commit does not solve the problem completely
because the original code contains a race that could cause the same
oops, although it was much less likely to be triggered unintentionally:
CPU1
rmmod bonding
bonding_exit()
bond_destroy_debugfs()
debugfs_remove_recursive(bonding_debug_root);
CPU2
echo -bond0 > /sys/class/net/bonding_masters
bond_uninit()
bond_debug_unregister()
if (!bonding_debug_root)
CPU1
bonding_debug_root = NULL;
So do NOT revert the bad commit (since the removed checks were racy
anyway), and instead change the order of actions taken during module
removal. The same oops can also happen if there is an error during
module init, so apply the same fix there. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "xsk: Support redirect to any socket bound to the same umem"
This reverts commit 2863d665ea41282379f108e4da6c8a2366ba66db.
This patch introduced a potential kernel crash when multiple napi instances
redirect to the same AF_XDP socket. By removing the queue_index check, it is
possible for multiple napi instances to access the Rx ring at the same time,
which will result in a corrupted ring state which can lead to a crash when
flushing the rings in __xsk_flush(). This can happen when the linked list of
sockets to flush gets corrupted by concurrent accesses. A quick and small fix
is not possible, so let us revert this for now. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: protect folio::private when attaching extent buffer folios
[BUG]
Since v6.8 there are rare kernel crashes reported by various people,
the common factor is bad page status error messages like this:
BUG: Bad page state in process kswapd0 pfn:d6e840
page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c
pfn:0xd6e840
aops:btree_aops ino:1
flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff)
page_type: 0xffffffff()
raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0
raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: non-NULL mapping
[CAUSE]
Commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") changes the sequence when allocating a new
extent buffer.
Previously we always called grab_extent_buffer() under
mapping->i_private_lock, to ensure the safety on modification on
folio::private (which is a pointer to extent buffer for regular
sectorsize).
This can lead to the following race:
Thread A is trying to allocate an extent buffer at bytenr X, with 4
4K pages, meanwhile thread B is trying to release the page at X + 4K
(the second page of the extent buffer at X).
Thread A | Thread B
-----------------------------------+-------------------------------------
| btree_release_folio()
| | This is for the page at X + 4K,
| | Not page X.
| |
alloc_extent_buffer() | |- release_extent_buffer()
|- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs)
| page at bytenr X (the first | | |
| page). | | |
| Which returned -EEXIST. | | |
| | | |
|- filemap_lock_folio() | | |
| Returned the first page locked. | | |
| | | |
|- grab_extent_buffer() | | |
| |- atomic_inc_not_zero() | | |
| | Returned false | | |
| |- folio_detach_private() | | |- folio_detach_private() for X
| |- folio_test_private() | | |- folio_test_private()
| Returned true | | | Returned true
|- folio_put() | |- folio_put()
Now there are two puts on the same folio at folio X, leading to refcount
underflow of the folio X, and eventually causing the BUG_ON() on the
page->mapping.
The condition is not that easy to hit:
- The release must be triggered for the middle page of an eb
If the release is on the same first page of an eb, page lock would kick
in and prevent the race.
- folio_detach_private() has a very small race window
It's only between folio_test_private() and folio_clear_private().
That's exactly when mapping->i_private_lock is used to prevent such race,
and commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") screwed that up.
At that time, I thought the page lock would kick in as
filemap_release_folio() also requires the page to be locked, but forgot
the filemap_release_folio() only locks one page, not all pages of an
extent buffer.
[FIX]
Move all the code requiring i_private_lock into
attach_eb_folio_to_filemap(), so that everything is done with proper
lock protection.
Furthermore to prevent future problems, add an extra
lockdep_assert_locked() to ensure we're holding the proper lock.
To reproducer that is able to hit the race (takes a few minutes with
instrumented code inserting delays to alloc_extent_buffer()):
#!/bin/sh
drop_caches () {
while(true); do
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
done
}
run_tar () {
while(true); do
for x in `seq 1 80` ; do
tar cf /dev/zero /mnt > /dev/null &
done
wait
done
}
mkfs.btrfs -f -d single -m single
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix request.queuelist usage in flush
Friedrich Weber reported a kernel crash problem and bisected to commit
81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine").
The root cause is that we use "list_move_tail(&rq->queuelist, pending)"
in the PREFLUSH/POSTFLUSH sequences. But rq->queuelist.next == xxx since
it's popped out from plug->cached_rq in __blk_mq_alloc_requests_batch().
We don't initialize its queuelist just for this first request, although
the queuelist of all later popped requests will be initialized.
Fix it by changing to use "list_add_tail(&rq->queuelist, pending)" so
rq->queuelist doesn't need to be initialized. It should be ok since rq
can't be on any list when PREFLUSH or POSTFLUSH, has no move actually.
Please note the commit 81ada09cc25e ("blk-flush: reuse rq queuelist in
flush state machine") also has another requirement that no drivers would
touch rq->queuelist after blk_mq_end_request() since we will reuse it to
add rq to the post-flush pending list in POSTFLUSH. If this is not true,
we will have to revert that commit IMHO.
This updated version adds "list_del_init(&rq->queuelist)" in flush rq
callback since the dm layer may submit request of a weird invalid format
(REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH), which causes double list_add
if without this "list_del_init(&rq->queuelist)". The weird invalid format
problem should be fixed in dm layer. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix kernel crash during resume
Currently during resume, QMI target memory is not properly handled, resulting
in kernel crash in case DMA remap is not supported:
BUG: Bad page state in process kworker/u16:54 pfn:36e80
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x36e80
page dumped because: nonzero _refcount
Call Trace:
bad_page
free_page_is_bad_report
__free_pages_ok
__free_pages
dma_direct_free
dma_free_attrs
ath12k_qmi_free_target_mem_chunk
ath12k_qmi_msg_mem_request_cb
The reason is:
Once ath12k module is loaded, firmware sends memory request to host. In case
DMA remap not supported, ath12k refuses the first request due to failure in
allocating with large segment size:
ath12k_pci 0000:04:00.0: qmi firmware request memory request
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 7077888
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 8454144
ath12k_pci 0000:04:00.0: qmi dma allocation failed (7077888 B type 1), will try later with small size
ath12k_pci 0000:04:00.0: qmi delays mem_request 2
ath12k_pci 0000:04:00.0: qmi firmware request memory request
Later firmware comes back with more but small segments and allocation
succeeds:
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 262144
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 65536
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
Now ath12k is working. If suspend is triggered, firmware will be reloaded
during resume. As same as before, firmware requests two large segments at
first. In ath12k_qmi_msg_mem_request_cb() segment count and size are
assigned:
ab->qmi.mem_seg_count == 2
ab->qmi.target_mem[0].size == 7077888
ab->qmi.target_mem[1].size == 8454144
Then allocation failed like before and ath12k_qmi_free_target_mem_chunk()
is called to free all allocated segments. Note the first segment is skipped
because its v.addr is cleared due to allocation failure:
chunk->v.addr = dma_alloc_coherent()
Also note that this leaks that segment because it has not been freed.
While freeing the second segment, a size of 8454144 is passed to
dma_free_coherent(). However remember that this segment is allocated at
the first time firmware is loaded, before suspend. So its real size is
524288, much smaller than 8454144. As a result kernel found we are freeing
some memory which is in use and thus cras
---truncated--- |