| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: essiv - Handle EBUSY correctly
As it is essiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of essiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Prevent handling any completions after qp destroy
HW may generate completions that indicates QP is destroyed.
Driver should not be scheduling any more completion handlers
for this QP, after the QP is destroyed. Since CQs are active
during the QP destroy, driver may still schedule completion
handlers. This can cause a race where the destroy_cq and poll_cq
running simultaneously.
Snippet of kernel panic while doing bnxt_re driver load unload in loop.
This indicates a poll after the CQ is freed.
[77786.481636] Call Trace:
[77786.481640] <TASK>
[77786.481644] bnxt_re_poll_cq+0x14a/0x620 [bnxt_re]
[77786.481658] ? kvm_clock_read+0x14/0x30
[77786.481693] __ib_process_cq+0x57/0x190 [ib_core]
[77786.481728] ib_cq_poll_work+0x26/0x80 [ib_core]
[77786.481761] process_one_work+0x1e5/0x3f0
[77786.481768] worker_thread+0x50/0x3a0
[77786.481785] ? __pfx_worker_thread+0x10/0x10
[77786.481790] kthread+0xe2/0x110
[77786.481794] ? __pfx_kthread+0x10/0x10
[77786.481797] ret_from_fork+0x2c/0x50
To avoid this, complete all completion handlers before returning the
destroy QP. If free_cq is called soon after destroy_qp, IB stack
will cancel the CQ work before invoking the destroy_cq verb and
this will prevent any race mentioned. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memleak when insert_old_idx() failed
Following process will cause a memleak for copied up znode:
dirty_cow_znode
zn = copy_znode(c, znode);
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err); // No one refers to zn.
Fetch a reproducer in [Link].
Function copy_znode() is split into 2 parts: resource allocation
and znode replacement, insert_old_idx() is split in similar way,
so resource cleanup could be done in error handling path without
corrupting metadata(mem & disk).
It's okay that old index inserting is put behind of add_idx_dirt(),
old index is used in layout_leb_in_gaps(), so the two processes do
not depend on each other. |
| In the Linux kernel, the following vulnerability has been resolved:
net: do not allow gso_size to be set to GSO_BY_FRAGS
One missing check in virtio_net_hdr_to_skb() allowed
syzbot to crash kernels again [1]
Do not allow gso_size to be set to GSO_BY_FRAGS (0xffff),
because this magic value is used by the kernel.
[1]
general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077]
CPU: 0 PID: 5039 Comm: syz-executor401 Not tainted 6.5.0-rc5-next-20230809-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
RIP: 0010:skb_segment+0x1a52/0x3ef0 net/core/skbuff.c:4500
Code: 00 00 00 e9 ab eb ff ff e8 6b 96 5d f9 48 8b 84 24 00 01 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e ea 21 00 00 48 8b 84 24 00 01
RSP: 0018:ffffc90003d3f1c8 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 000000000001fffe RCX: 0000000000000000
RDX: 000000000000000e RSI: ffffffff882a3115 RDI: 0000000000000070
RBP: ffffc90003d3f378 R08: 0000000000000005 R09: 000000000000ffff
R10: 000000000000ffff R11: 5ee4a93e456187d6 R12: 000000000001ffc6
R13: dffffc0000000000 R14: 0000000000000008 R15: 000000000000ffff
FS: 00005555563f2380(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020020000 CR3: 000000001626d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
udp6_ufo_fragment+0x9d2/0xd50 net/ipv6/udp_offload.c:109
ipv6_gso_segment+0x5c4/0x17b0 net/ipv6/ip6_offload.c:120
skb_mac_gso_segment+0x292/0x610 net/core/gso.c:53
__skb_gso_segment+0x339/0x710 net/core/gso.c:124
skb_gso_segment include/net/gso.h:83 [inline]
validate_xmit_skb+0x3a5/0xf10 net/core/dev.c:3625
__dev_queue_xmit+0x8f0/0x3d60 net/core/dev.c:4329
dev_queue_xmit include/linux/netdevice.h:3082 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24c7/0x5570 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:727 [inline]
sock_sendmsg+0xd9/0x180 net/socket.c:750
____sys_sendmsg+0x6ac/0x940 net/socket.c:2496
___sys_sendmsg+0x135/0x1d0 net/socket.c:2550
__sys_sendmsg+0x117/0x1e0 net/socket.c:2579
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7ff27cdb34d9 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix skb leak by txs missing in AMSDU
txs may be dropped if the frame is aggregated in AMSDU. When the problem
shows up, some SKBs would be hold in driver to cause network stopped
temporarily. Even if the problem can be recovered by txs timeout handling,
mt7921 still need to disable txs in AMSDU to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix memory leak of PBLE objects
On rmmod of irdma, the PBLE object memory is not being freed. PBLE object
memory are not statically pre-allocated at function initialization time
unlike other HMC objects. PBLEs objects and the Segment Descriptors (SD)
for it can be dynamically allocated during scale up and SD's remain
allocated till function deinitialization.
Fix this leak by adding IRDMA_HMC_IW_PBLE to the iw_hmc_obj_types[] table
and skip pbles in irdma_create_hmc_obj but not in irdma_del_hmc_objects(). |
| In the Linux kernel, the following vulnerability has been resolved:
phy: tegra: xusb: Clear the driver reference in usb-phy dev
For the dual-role port, it will assign the phy dev to usb-phy dev and
use the port dev driver as the dev driver of usb-phy.
When we try to destroy the port dev, it will destroy its dev driver
as well. But we did not remove the reference from usb-phy dev. This
might cause the use-after-free issue in KASAN. |
| In the Linux kernel, the following vulnerability has been resolved:
kheaders: Use array declaration instead of char
Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination
and source buffers. Defining kernel_headers_data as "char" would trip
this check. Since these addresses are treated as byte arrays, define
them as arrays (as done everywhere else).
This was seen with:
$ cat /sys/kernel/kheaders.tar.xz >> /dev/null
detected buffer overflow in memcpy
kernel BUG at lib/string_helpers.c:1027!
...
RIP: 0010:fortify_panic+0xf/0x20
[...]
Call Trace:
<TASK>
ikheaders_read+0x45/0x50 [kheaders]
kernfs_fop_read_iter+0x1a4/0x2f0
... |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Add a length limitation for the ivrs_acpihid command-line parameter
The 'acpiid' buffer in the parse_ivrs_acpihid function may overflow,
because the string specifier in the format string sscanf()
has no width limitation.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Check if ffa_driver remove is present before executing
Currently ffa_drv->remove() is called unconditionally from
ffa_device_remove(). Since the driver registration doesn't check for it
and allows it to be registered without .remove callback, we need to check
for the presence of it before executing it from ffa_device_remove() to
above a NULL pointer dereference like the one below:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000086000004
| EC = 0x21: IABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881cc8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP
| CPU: 3 PID: 130 Comm: rmmod Not tainted 6.3.0-rc7 #6
| Hardware name: FVP Base RevC (DT)
| pstate: 63402809 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=-c)
| pc : 0x0
| lr : ffa_device_remove+0x20/0x2c
| Call trace:
| 0x0
| device_release_driver_internal+0x16c/0x260
| driver_detach+0x90/0xd0
| bus_remove_driver+0xdc/0x11c
| driver_unregister+0x30/0x54
| ffa_driver_unregister+0x14/0x20
| cleanup_module+0x18/0xeec
| __arm64_sys_delete_module+0x234/0x378
| invoke_syscall+0x40/0x108
| el0_svc_common+0xb4/0xf0
| do_el0_svc+0x30/0xa4
| el0_svc+0x2c/0x7c
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x190/0x194 |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Set end correctly when doing batch carry
Even though the test suite covers this it somehow became obscured that
this wasn't working.
The test iommufd_ioas.mock_domain.access_domain_destory would blow up
rarely.
end should be set to 1 because this just pushed an item, the carry, to the
pfns list.
Sometimes the test would blow up with:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP
CPU: 5 PID: 584 Comm: iommufd Not tainted 6.5.0-rc1-dirty #1236
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:batch_unpin+0xa2/0x100 [iommufd]
Code: 17 48 81 fe ff ff 07 00 77 70 48 8b 15 b7 be 97 e2 48 85 d2 74 14 48 8b 14 fa 48 85 d2 74 0b 40 0f b6 f6 48 c1 e6 04 48 01 f2 <48> 8b 3a 48 c1 e0 06 89 ca 48 89 de 48 83 e7 f0 48 01 c7 e8 96 dc
RSP: 0018:ffffc90001677a58 EFLAGS: 00010246
RAX: 00007f7e2646f000 RBX: 0000000000000000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: 00000000fefc4c8d RDI: 0000000000fefc4c
RBP: ffffc90001677a80 R08: 0000000000000048 R09: 0000000000000200
R10: 0000000000030b98 R11: ffffffff81f3bb40 R12: 0000000000000001
R13: ffff888101f75800 R14: ffffc90001677ad0 R15: 00000000000001fe
FS: 00007f9323679740(0000) GS:ffff8881ba540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105ede003 CR4: 00000000003706a0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x5c/0x70
? __die+0x1f/0x60
? page_fault_oops+0x15d/0x440
? lock_release+0xbc/0x240
? exc_page_fault+0x4a4/0x970
? asm_exc_page_fault+0x27/0x30
? batch_unpin+0xa2/0x100 [iommufd]
? batch_unpin+0xba/0x100 [iommufd]
__iopt_area_unfill_domain+0x198/0x430 [iommufd]
? __mutex_lock+0x8c/0xb80
? __mutex_lock+0x6aa/0xb80
? xa_erase+0x28/0x30
? iopt_table_remove_domain+0x162/0x320 [iommufd]
? lock_release+0xbc/0x240
iopt_area_unfill_domain+0xd/0x10 [iommufd]
iopt_table_remove_domain+0x195/0x320 [iommufd]
iommufd_hw_pagetable_destroy+0xb3/0x110 [iommufd]
iommufd_object_destroy_user+0x8e/0xf0 [iommufd]
iommufd_device_detach+0xc5/0x140 [iommufd]
iommufd_selftest_destroy+0x1f/0x70 [iommufd]
iommufd_object_destroy_user+0x8e/0xf0 [iommufd]
iommufd_destroy+0x3a/0x50 [iommufd]
iommufd_fops_ioctl+0xfb/0x170 [iommufd]
__x64_sys_ioctl+0x40d/0x9a0
do_syscall_64+0x3c/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix OOB read in indx_insert_into_buffer
Syzbot reported a OOB read bug:
BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0
fs/ntfs3/index.c:1755
Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630
Call Trace:
<TASK>
memmove+0x25/0x60 mm/kasan/shadow.c:54
indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755
indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863
ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548
ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100
lookup_open fs/namei.c:3413 [inline]
If the member struct INDEX_BUFFER *index of struct indx_node is
incorrect, that is, the value of __le32 used is greater than the value
of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when
memmove is called in indx_insert_into_buffer().
Fix this by adding a check in hdr_find_e(). |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi:ssif: Fix a memory leak when scanning for an adapter
The adapter scan ssif_info_find() sets info->adapter_name if the adapter
info came from SMBIOS, as it's not set in that case. However, this
function can be called more than once, and it will leak the adapter name
if it had already been set. So check for NULL before setting it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: realtek: fix out-of-bounds access
The probe function sets priv->chip_data to (void *)priv + sizeof(*priv)
with the expectation that priv has enough trailing space.
However, only realtek-smi actually allocated this chip_data space.
Do likewise in realtek-mdio to fix out-of-bounds accesses.
These accesses likely went unnoticed so far, because of an (unused)
buf[4096] member in struct realtek_priv, which caused kmalloc to
round up the allocated buffer to a big enough size, so nothing of
value was overwritten. With a different allocator (like in the barebox
bootloader port of the driver) or with KASAN, the memory corruption
becomes quickly apparent. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when deleting free space root from the dirty cow roots list
When deleting the free space tree we are deleting the free space root
from the list fs_info->dirty_cowonly_roots without taking the lock that
protects it, which is struct btrfs_fs_info::trans_lock.
This unsynchronized list manipulation may cause chaos if there's another
concurrent manipulation of this list, such as when adding a root to it
with ctree.c:add_root_to_dirty_list().
This can result in all sorts of weird failures caused by a race, such as
the following crash:
[337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI
[337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.279928] Code: 85 38 06 00 (...)
[337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206
[337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000
[337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070
[337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b
[337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600
[337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48
[337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000
[337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0
[337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[337571.282874] Call Trace:
[337571.283101] <TASK>
[337571.283327] ? __die_body+0x1b/0x60
[337571.283570] ? die_addr+0x39/0x60
[337571.283796] ? exc_general_protection+0x22e/0x430
[337571.284022] ? asm_exc_general_protection+0x22/0x30
[337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs]
[337571.284803] ? _raw_spin_unlock+0x15/0x30
[337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs]
[337571.285305] reset_balance_state+0x152/0x1b0 [btrfs]
[337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs]
[337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410
[337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs]
[337571.286358] ? mod_objcg_state+0xd2/0x360
[337571.286577] ? refill_obj_stock+0xb0/0x160
[337571.286798] ? seq_release+0x25/0x30
[337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0
[337571.287235] ? percpu_counter_add_batch+0x2e/0xa0
[337571.287455] ? __x64_sys_ioctl+0x88/0xc0
[337571.287675] __x64_sys_ioctl+0x88/0xc0
[337571.287901] do_syscall_64+0x38/0x90
[337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[337571.288352] RIP: 0033:0x7f478aaffe9b
So fix this by locking struct btrfs_fs_info::trans_lock before deleting
the free space root from that list. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to call f2fs_wait_on_page_writeback() in f2fs_write_raw_pages()
BUG_ON() will be triggered when writing files concurrently,
because the same page is writtenback multiple times.
1597 void folio_end_writeback(struct folio *folio)
1598 {
......
1618 if (!__folio_end_writeback(folio))
1619 BUG();
......
1625 }
kernel BUG at mm/filemap.c:1619!
Call Trace:
<TASK>
f2fs_write_end_io+0x1a0/0x370
blk_update_request+0x6c/0x410
blk_mq_end_request+0x15/0x130
blk_complete_reqs+0x3c/0x50
__do_softirq+0xb8/0x29b
? sort_range+0x20/0x20
run_ksoftirqd+0x19/0x20
smpboot_thread_fn+0x10b/0x1d0
kthread+0xde/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
Below is the concurrency scenario:
[Process A] [Process B] [Process C]
f2fs_write_raw_pages()
- redirty_page_for_writepage()
- unlock page()
f2fs_do_write_data_page()
- lock_page()
- clear_page_dirty_for_io()
- set_page_writeback() [1st writeback]
.....
- unlock page()
generic_perform_write()
- f2fs_write_begin()
- wait_for_stable_page()
- f2fs_write_end()
- set_page_dirty()
- lock_page()
- f2fs_do_write_data_page()
- set_page_writeback() [2st writeback]
This problem was introduced by the previous commit 7377e853967b ("f2fs:
compress: fix potential deadlock of compress file"). All pagelocks were
released in f2fs_write_raw_pages(), but whether the page was
in the writeback state was ignored in the subsequent writing process.
Let's fix it by waiting for the page to writeback before writing. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix BUG in ext4_mb_new_inode_pa() due to overflow
When we calculate the end position of ext4_free_extent, this position may
be exactly where ext4_lblk_t (i.e. uint) overflows. For example, if
ac_g_ex.fe_logical is 4294965248 and ac_orig_goal_len is 2048, then the
computed end is 0x100000000, which is 0. If ac->ac_o_ex.fe_logical is not
the first case of adjusting the best extent, that is, new_bex_end > 0, the
following BUG_ON will be triggered:
=========================================================
kernel BUG at fs/ext4/mballoc.c:5116!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 673 Comm: xfs_io Tainted: G E 6.5.0-rc1+ #279
RIP: 0010:ext4_mb_new_inode_pa+0xc5/0x430
Call Trace:
<TASK>
ext4_mb_use_best_found+0x203/0x2f0
ext4_mb_try_best_found+0x163/0x240
ext4_mb_regular_allocator+0x158/0x1550
ext4_mb_new_blocks+0x86a/0xe10
ext4_ext_map_blocks+0xb0c/0x13a0
ext4_map_blocks+0x2cd/0x8f0
ext4_iomap_begin+0x27b/0x400
iomap_iter+0x222/0x3d0
__iomap_dio_rw+0x243/0xcb0
iomap_dio_rw+0x16/0x80
=========================================================
A simple reproducer demonstrating the problem:
mkfs.ext4 -F /dev/sda -b 4096 100M
mount /dev/sda /tmp/test
fallocate -l1M /tmp/test/tmp
fallocate -l10M /tmp/test/file
fallocate -i -o 1M -l16777203M /tmp/test/file
fsstress -d /tmp/test -l 0 -n 100000 -p 8 &
sleep 10 && killall -9 fsstress
rm -f /tmp/test/tmp
xfs_io -c "open -ad /tmp/test/file" -c "pwrite -S 0xff 0 8192"
We simply refactor the logic for adjusting the best extent by adding
a temporary ext4_free_extent ex and use extent_logical_end() to avoid
overflow, which also simplifies the code. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: clean up in all error paths when enabling SR-IOV
After commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), removing
the igb module could hang or crash (depending on the machine) when the
module has been loaded with the max_vfs parameter set to some value != 0.
In case of one test machine with a dual port 82580, this hang occurred:
[ 232.480687] igb 0000:41:00.1: removed PHC on enp65s0f1
[ 233.093257] igb 0000:41:00.1: IOV Disabled
[ 233.329969] pcieport 0000:40:01.0: AER: Multiple Uncorrected (Non-Fatal) err0
[ 233.340302] igb 0000:41:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fata)
[ 233.352248] igb 0000:41:00.0: device [8086:1516] error status/mask=00100000
[ 233.361088] igb 0000:41:00.0: [20] UnsupReq (First)
[ 233.368183] igb 0000:41:00.0: AER: TLP Header: 40000001 0000040f cdbfc00c c
[ 233.376846] igb 0000:41:00.1: PCIe Bus Error: severity=Uncorrected (Non-Fata)
[ 233.388779] igb 0000:41:00.1: device [8086:1516] error status/mask=00100000
[ 233.397629] igb 0000:41:00.1: [20] UnsupReq (First)
[ 233.404736] igb 0000:41:00.1: AER: TLP Header: 40000001 0000040f cdbfc00c c
[ 233.538214] pci 0000:41:00.1: AER: can't recover (no error_detected callback)
[ 233.538401] igb 0000:41:00.0: removed PHC on enp65s0f0
[ 233.546197] pcieport 0000:40:01.0: AER: device recovery failed
[ 234.157244] igb 0000:41:00.0: IOV Disabled
[ 371.619705] INFO: task irq/35-aerdrv:257 blocked for more than 122 seconds.
[ 371.627489] Not tainted 6.4.0-dirty #2
[ 371.632257] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this.
[ 371.641000] task:irq/35-aerdrv state:D stack:0 pid:257 ppid:2 f0
[ 371.650330] Call Trace:
[ 371.653061] <TASK>
[ 371.655407] __schedule+0x20e/0x660
[ 371.659313] schedule+0x5a/0xd0
[ 371.662824] schedule_preempt_disabled+0x11/0x20
[ 371.667983] __mutex_lock.constprop.0+0x372/0x6c0
[ 371.673237] ? __pfx_aer_root_reset+0x10/0x10
[ 371.678105] report_error_detected+0x25/0x1c0
[ 371.682974] ? __pfx_report_normal_detected+0x10/0x10
[ 371.688618] pci_walk_bus+0x72/0x90
[ 371.692519] pcie_do_recovery+0xb2/0x330
[ 371.696899] aer_process_err_devices+0x117/0x170
[ 371.702055] aer_isr+0x1c0/0x1e0
[ 371.705661] ? __set_cpus_allowed_ptr+0x54/0xa0
[ 371.710723] ? __pfx_irq_thread_fn+0x10/0x10
[ 371.715496] irq_thread_fn+0x20/0x60
[ 371.719491] irq_thread+0xe6/0x1b0
[ 371.723291] ? __pfx_irq_thread_dtor+0x10/0x10
[ 371.728255] ? __pfx_irq_thread+0x10/0x10
[ 371.732731] kthread+0xe2/0x110
[ 371.736243] ? __pfx_kthread+0x10/0x10
[ 371.740430] ret_from_fork+0x2c/0x50
[ 371.744428] </TASK>
The reproducer was a simple script:
#!/bin/sh
for i in `seq 1 5`; do
modprobe -rv igb
modprobe -v igb max_vfs=1
sleep 1
modprobe -rv igb
done
It turned out that this could only be reproduce on 82580 (quad and
dual-port), but not on 82576, i350 and i210. Further debugging showed
that igb_enable_sriov()'s call to pci_enable_sriov() is failing, because
dev->is_physfn is 0 on 82580.
Prior to commit 50f303496d92 ("igb: Enable SR-IOV after reinit"),
igb_enable_sriov() jumped into the "err_out" cleanup branch. After this
commit it only returned the error code.
So the cleanup didn't take place, and the incorrect VF setup in the
igb_adapter structure fooled the igb driver into assuming that VFs have
been set up where no VF actually existed.
Fix this problem by cleaning up again if pci_enable_sriov() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: use work to update rate to avoid RCU warning
The ieee80211_ops::sta_rc_update must be atomic, because
ieee80211_chan_bw_change() holds rcu_read lock while calling
drv_sta_rc_update(), so create a work to do original things.
Voluntary context switch within RCU read-side critical section!
WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318
rcu_note_context_switch+0x571/0x5d0
CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE
Workqueue: phy3 ieee80211_chswitch_work [mac80211]
RIP: 0010:rcu_note_context_switch+0x571/0x5d0
Call Trace:
<TASK>
__schedule+0xb0/0x1460
? __mod_timer+0x116/0x360
schedule+0x5a/0xc0
schedule_timeout+0x87/0x150
? trace_raw_output_tick_stop+0x60/0x60
wait_for_completion_timeout+0x7b/0x140
usb_start_wait_urb+0x82/0x160 [usbcore
usb_control_msg+0xe3/0x140 [usbcore
rtw_usb_read+0x88/0xe0 [rtw_usb
rtw_usb_read8+0xf/0x10 [rtw_usb
rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core
rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core
drv_sta_rc_update+0x7c/0x160 [mac80211
ieee80211_chan_bw_change+0xfb/0x110 [mac80211
ieee80211_change_chanctx+0x38/0x130 [mac80211
ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211
ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211
ieee80211_chswitch_work+0x95/0x170 [mac80211
process_one_work+0x201/0x410
worker_thread+0x4a/0x3b0
? process_one_work+0x410/0x410
kthread+0xe1/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Add !tpm_amd_is_rng_defective() to the hwrng_unregister() call site
The following crash was reported:
[ 1950.279393] list_del corruption, ffff99560d485790->next is NULL
[ 1950.279400] ------------[ cut here ]------------
[ 1950.279401] kernel BUG at lib/list_debug.c:49!
[ 1950.279405] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 1950.279407] CPU: 11 PID: 5886 Comm: modprobe Tainted: G O 6.2.8_1 #1
[ 1950.279409] Hardware name: Gigabyte Technology Co., Ltd. B550M AORUS PRO-P/B550M AORUS PRO-P,
BIOS F15c 05/11/2022
[ 1950.279410] RIP: 0010:__list_del_entry_valid+0x59/0xc0
[ 1950.279415] Code: 48 8b 01 48 39 f8 75 5a 48 8b 72 08 48 39 c6 75 65 b8 01 00 00 00 c3 cc cc cc
cc 48 89 fe 48 c7 c7 08 a8 13 9e e8 b7 0a bc ff <0f> 0b 48 89 fe 48 c7 c7 38 a8 13 9e e8 a6 0a bc
ff 0f 0b 48 89 fe
[ 1950.279416] RSP: 0018:ffffa96d05647e08 EFLAGS: 00010246
[ 1950.279418] RAX: 0000000000000033 RBX: ffff99560d485750 RCX: 0000000000000000
[ 1950.279419] RDX: 0000000000000000 RSI: ffffffff9e107c59 RDI: 00000000ffffffff
[ 1950.279420] RBP: ffffffffc19c5168 R08: 0000000000000000 R09: ffffa96d05647cc8
[ 1950.279421] R10: 0000000000000003 R11: ffffffff9ea2a568 R12: 0000000000000000
[ 1950.279422] R13: ffff99560140a2e0 R14: ffff99560127d2e0 R15: 0000000000000000
[ 1950.279422] FS: 00007f67da795380(0000) GS:ffff995d1f0c0000(0000) knlGS:0000000000000000
[ 1950.279424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1950.279424] CR2: 00007f67da7e65c0 CR3: 00000001feed2000 CR4: 0000000000750ee0
[ 1950.279426] PKRU: 55555554
[ 1950.279426] Call Trace:
[ 1950.279428] <TASK>
[ 1950.279430] hwrng_unregister+0x28/0xe0 [rng_core]
[ 1950.279436] tpm_chip_unregister+0xd5/0xf0 [tpm]
Add the forgotten !tpm_amd_is_rng_defective() invariant to the
hwrng_unregister() call site inside tpm_chip_unregister(). |