| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
libbpf: Handle size overflow for ringbuf mmap
The maximum size of ringbuf is 2GB on x86-64 host, so 2 * max_entries
will overflow u32 when mapping producer page and data pages. Only
casting max_entries to size_t is not enough, because for 32-bits
application on 64-bits kernel the size of read-only mmap region
also could overflow size_t.
So fixing it by casting the size of read-only mmap region into a __u64
and checking whether or not there will be overflow during mmap. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix buffer overflow in elem comparison
For vendor elements, the code here assumes that 5 octets
are present without checking. Since the element itself is
already checked to fit, we only need to check the length. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac8021: fix possible oob access in ieee80211_get_rate_duration
Fix possible out-of-bound access in ieee80211_get_rate_duration routine
as reported by the following UBSAN report:
UBSAN: array-index-out-of-bounds in net/mac80211/airtime.c:455:47
index 15 is out of range for type 'u16 [12]'
CPU: 2 PID: 217 Comm: kworker/u32:10 Not tainted 6.1.0-060100rc3-generic
Hardware name: Acer Aspire TC-281/Aspire TC-281, BIOS R01-A2 07/18/2017
Workqueue: mt76 mt76u_tx_status_data [mt76_usb]
Call Trace:
<TASK>
show_stack+0x4e/0x61
dump_stack_lvl+0x4a/0x6f
dump_stack+0x10/0x18
ubsan_epilogue+0x9/0x43
__ubsan_handle_out_of_bounds.cold+0x42/0x47
ieee80211_get_rate_duration.constprop.0+0x22f/0x2a0 [mac80211]
? ieee80211_tx_status_ext+0x32e/0x640 [mac80211]
ieee80211_calc_rx_airtime+0xda/0x120 [mac80211]
ieee80211_calc_tx_airtime+0xb4/0x100 [mac80211]
mt76x02_send_tx_status+0x266/0x480 [mt76x02_lib]
mt76x02_tx_status_data+0x52/0x80 [mt76x02_lib]
mt76u_tx_status_data+0x67/0xd0 [mt76_usb]
process_one_work+0x225/0x400
worker_thread+0x50/0x3e0
? process_one_work+0x400/0x400
kthread+0xe9/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: Handle attempt to delete multipath route when fib_info contains an nh reference
Gwangun Jung reported a slab-out-of-bounds access in fib_nh_match:
fib_nh_match+0xf98/0x1130 linux-6.0-rc7/net/ipv4/fib_semantics.c:961
fib_table_delete+0x5f3/0xa40 linux-6.0-rc7/net/ipv4/fib_trie.c:1753
inet_rtm_delroute+0x2b3/0x380 linux-6.0-rc7/net/ipv4/fib_frontend.c:874
Separate nexthop objects are mutually exclusive with the legacy
multipath spec. Fix fib_nh_match to return if the config for the
to be deleted route contains a multipath spec while the fib_info
is using a nexthop object. |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-dv-timings.c: fix too strict blanking sanity checks
Sanity checks were added to verify the v4l2_bt_timings blanking fields
in order to avoid integer overflows when userspace passes weird values.
But that assumed that userspace would correctly fill in the front porch,
backporch and sync values, but sometimes all you know is the total
blanking, which is then assigned to just one of these fields.
And that can fail with these checks.
So instead set a maximum for the total horizontal and vertical
blanking and check that each field remains below that.
That is still sufficient to avoid integer overflows, but it also
allows for more flexibility in how userspace fills in these fields. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: fix shift-out-of-bounds in hid_report_raw_event
Syzbot reported shift-out-of-bounds in hid_report_raw_event.
microsoft 0003:045E:07DA.0001: hid_field_extract() called with n (128) >
32! (swapper/0)
======================================================================
UBSAN: shift-out-of-bounds in drivers/hid/hid-core.c:1323:20
shift exponent 127 is too large for 32-bit type 'int'
CPU: 0 PID: 0 Comm: swapper/0 Not tainted
6.1.0-rc4-syzkaller-00159-g4bbf3422df78 #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS
Google 10/26/2022
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e3/0x2cb lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:151 [inline]
__ubsan_handle_shift_out_of_bounds+0x3a6/0x420 lib/ubsan.c:322
snto32 drivers/hid/hid-core.c:1323 [inline]
hid_input_fetch_field drivers/hid/hid-core.c:1572 [inline]
hid_process_report drivers/hid/hid-core.c:1665 [inline]
hid_report_raw_event+0xd56/0x18b0 drivers/hid/hid-core.c:1998
hid_input_report+0x408/0x4f0 drivers/hid/hid-core.c:2066
hid_irq_in+0x459/0x690 drivers/hid/usbhid/hid-core.c:284
__usb_hcd_giveback_urb+0x369/0x530 drivers/usb/core/hcd.c:1671
dummy_timer+0x86b/0x3110 drivers/usb/gadget/udc/dummy_hcd.c:1988
call_timer_fn+0xf5/0x210 kernel/time/timer.c:1474
expire_timers kernel/time/timer.c:1519 [inline]
__run_timers+0x76a/0x980 kernel/time/timer.c:1790
run_timer_softirq+0x63/0xf0 kernel/time/timer.c:1803
__do_softirq+0x277/0x75b kernel/softirq.c:571
__irq_exit_rcu+0xec/0x170 kernel/softirq.c:650
irq_exit_rcu+0x5/0x20 kernel/softirq.c:662
sysvec_apic_timer_interrupt+0x91/0xb0 arch/x86/kernel/apic/apic.c:1107
======================================================================
If the size of the integer (unsigned n) is bigger than 32 in snto32(),
shift exponent will be too large for 32-bit type 'int', resulting in a
shift-out-of-bounds bug.
Fix this by adding a check on the size of the integer (unsigned n) in
snto32(). To add support for n greater than 32 bits, set n to 32, if n
is greater than 32. |
| In the Linux kernel, the following vulnerability has been resolved:
NFC: nci: Bounds check struct nfc_target arrays
While running under CONFIG_FORTIFY_SOURCE=y, syzkaller reported:
memcpy: detected field-spanning write (size 129) of single field "target->sensf_res" at net/nfc/nci/ntf.c:260 (size 18)
This appears to be a legitimate lack of bounds checking in
nci_add_new_protocol(). Add the missing checks. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mvneta: Prevent out of bounds read in mvneta_config_rss()
The pp->indir[0] value comes from the user. It is passed to:
if (cpu_online(pp->rxq_def))
inside the mvneta_percpu_elect() function. It needs bounds checkeding
to ensure that it is not beyond the end of the cpu bitmap. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: Prevent buffer overflow in setup handler
Setup function uvc_function_setup permits control transfer
requests with up to 64 bytes of payload (UVC_MAX_REQUEST_SIZE),
data stage handler for OUT transfer uses memcpy to copy req->actual
bytes to uvc_event->data.data array of size 60. This may result
in an overflow of 4 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix crash due to incorrect copy_map_value
When both bpf_spin_lock and bpf_timer are present in a BPF map value,
copy_map_value needs to skirt both objects when copying a value into and
out of the map. However, the current code does not set both s_off and
t_off in copy_map_value, which leads to a crash when e.g. bpf_spin_lock
is placed in map value with bpf_timer, as bpf_map_update_elem call will
be able to overwrite the other timer object.
When the issue is not fixed, an overwriting can produce the following
splat:
[root@(none) bpf]# ./test_progs -t timer_crash
[ 15.930339] bpf_testmod: loading out-of-tree module taints kernel.
[ 16.037849] ==================================================================
[ 16.038458] BUG: KASAN: user-memory-access in __pv_queued_spin_lock_slowpath+0x32b/0x520
[ 16.038944] Write of size 8 at addr 0000000000043ec0 by task test_progs/325
[ 16.039399]
[ 16.039514] CPU: 0 PID: 325 Comm: test_progs Tainted: G OE 5.16.0+ #278
[ 16.039983] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.15.0-1 04/01/2014
[ 16.040485] Call Trace:
[ 16.040645] <TASK>
[ 16.040805] dump_stack_lvl+0x59/0x73
[ 16.041069] ? __pv_queued_spin_lock_slowpath+0x32b/0x520
[ 16.041427] kasan_report.cold+0x116/0x11b
[ 16.041673] ? __pv_queued_spin_lock_slowpath+0x32b/0x520
[ 16.042040] __pv_queued_spin_lock_slowpath+0x32b/0x520
[ 16.042328] ? memcpy+0x39/0x60
[ 16.042552] ? pv_hash+0xd0/0xd0
[ 16.042785] ? lockdep_hardirqs_off+0x95/0xd0
[ 16.043079] __bpf_spin_lock_irqsave+0xdf/0xf0
[ 16.043366] ? bpf_get_current_comm+0x50/0x50
[ 16.043608] ? jhash+0x11a/0x270
[ 16.043848] bpf_timer_cancel+0x34/0xe0
[ 16.044119] bpf_prog_c4ea1c0f7449940d_sys_enter+0x7c/0x81
[ 16.044500] bpf_trampoline_6442477838_0+0x36/0x1000
[ 16.044836] __x64_sys_nanosleep+0x5/0x140
[ 16.045119] do_syscall_64+0x59/0x80
[ 16.045377] ? lock_is_held_type+0xe4/0x140
[ 16.045670] ? irqentry_exit_to_user_mode+0xa/0x40
[ 16.046001] ? mark_held_locks+0x24/0x90
[ 16.046287] ? asm_exc_page_fault+0x1e/0x30
[ 16.046569] ? asm_exc_page_fault+0x8/0x30
[ 16.046851] ? lockdep_hardirqs_on+0x7e/0x100
[ 16.047137] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 16.047405] RIP: 0033:0x7f9e4831718d
[ 16.047602] Code: b4 0c 00 0f 05 eb a9 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d b3 6c 0c 00 f7 d8 64 89 01 48
[ 16.048764] RSP: 002b:00007fff488086b8 EFLAGS: 00000206 ORIG_RAX: 0000000000000023
[ 16.049275] RAX: ffffffffffffffda RBX: 00007f9e48683740 RCX: 00007f9e4831718d
[ 16.049747] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00007fff488086d0
[ 16.050225] RBP: 00007fff488086f0 R08: 00007fff488085d7 R09: 00007f9e4cb594a0
[ 16.050648] R10: 0000000000000000 R11: 0000000000000206 R12: 00007f9e484cde30
[ 16.051124] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 16.051608] </TASK>
[ 16.051762] ================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: DR, Fix slab-out-of-bounds in mlx5_cmd_dr_create_fte
When adding a rule with 32 destinations, we hit the following out-of-band
access issue:
BUG: KASAN: slab-out-of-bounds in mlx5_cmd_dr_create_fte+0x18ee/0x1e70
This patch fixes the issue by both increasing the allocated buffers to
accommodate for the needed actions and by checking the number of actions
to prevent this issue when a rule with too many actions is provided. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix crash due to out of bounds access into reg2btf_ids.
When commit e6ac2450d6de ("bpf: Support bpf program calling kernel function") added
kfunc support, it defined reg2btf_ids as a cheap way to translate the verifier
reg type to the appropriate btf_vmlinux BTF ID, however
commit c25b2ae13603 ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL")
moved the __BPF_REG_TYPE_MAX from the last member of bpf_reg_type enum to after
the base register types, and defined other variants using type flag
composition. However, now, the direct usage of reg->type to index into
reg2btf_ids may no longer fall into __BPF_REG_TYPE_MAX range, and hence lead to
out of bounds access and kernel crash on dereference of bad pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: tsc2046: fix memory corruption by preventing array overflow
On one side we have indio_dev->num_channels includes all physical channels +
timestamp channel. On other side we have an array allocated only for
physical channels. So, fix memory corruption by ARRAY_SIZE() instead of
num_channels variable.
Note the first case is a cleanup rather than a fix as the software
timestamp channel bit in active_scanmask is never set by the IIO core. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: sof-nau8825: fix module alias overflow
The maximum name length for a platform_device_id entry is 20 characters
including the trailing NUL byte. The sof_nau8825.c file exceeds that,
which causes an obscure error message:
sound/soc/intel/boards/snd-soc-sof_nau8825.mod.c:35:45: error: illegal character encoding in string literal [-Werror,-Winvalid-source-encoding]
MODULE_ALIAS("platform:adl_max98373_nau8825<U+0018><AA>");
^~~~
include/linux/module.h:168:49: note: expanded from macro 'MODULE_ALIAS'
^~~~~~
include/linux/module.h:165:56: note: expanded from macro 'MODULE_INFO'
^~~~
include/linux/moduleparam.h:26:47: note: expanded from macro '__MODULE_INFO'
= __MODULE_INFO_PREFIX __stringify(tag) "=" info
I could not figure out how to make the module handling robust enough
to handle this better, but as a quick fix, using slightly shorter
names that are still unique avoids the build issue. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: qcom-geni-serial: fix slab-out-of-bounds on RX FIFO buffer
Driver's probe allocates memory for RX FIFO (port->rx_fifo) based on
default RX FIFO depth, e.g. 16. Later during serial startup the
qcom_geni_serial_port_setup() updates the RX FIFO depth
(port->rx_fifo_depth) to match real device capabilities, e.g. to 32.
The RX UART handle code will read "port->rx_fifo_depth" number of words
into "port->rx_fifo" buffer, thus exceeding the bounds. This can be
observed in certain configurations with Qualcomm Bluetooth HCI UART
device and KASAN:
Bluetooth: hci0: QCA Product ID :0x00000010
Bluetooth: hci0: QCA SOC Version :0x400a0200
Bluetooth: hci0: QCA ROM Version :0x00000200
Bluetooth: hci0: QCA Patch Version:0x00000d2b
Bluetooth: hci0: QCA controller version 0x02000200
Bluetooth: hci0: QCA Downloading qca/htbtfw20.tlv
bluetooth hci0: Direct firmware load for qca/htbtfw20.tlv failed with error -2
Bluetooth: hci0: QCA Failed to request file: qca/htbtfw20.tlv (-2)
Bluetooth: hci0: QCA Failed to download patch (-2)
==================================================================
BUG: KASAN: slab-out-of-bounds in handle_rx_uart+0xa8/0x18c
Write of size 4 at addr ffff279347d578c0 by task swapper/0/0
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.1.0-rt5-00350-gb2450b7e00be-dirty #26
Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0
show_stack+0x18/0x40
dump_stack_lvl+0x8c/0xb8
print_report+0x188/0x488
kasan_report+0xb4/0x100
__asan_store4+0x80/0xa4
handle_rx_uart+0xa8/0x18c
qcom_geni_serial_handle_rx+0x84/0x9c
qcom_geni_serial_isr+0x24c/0x760
__handle_irq_event_percpu+0x108/0x500
handle_irq_event+0x6c/0x110
handle_fasteoi_irq+0x138/0x2cc
generic_handle_domain_irq+0x48/0x64
If the RX FIFO depth changes after probe, be sure to resize the buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hid-thrustmaster: fix OOB read in thrustmaster_interrupts
Syzbot reported an slab-out-of-bounds Read in thrustmaster_probe() bug.
The root case is in missing validation check of actual number of endpoints.
Code should not blindly access usb_host_interface::endpoint array, since
it may contain less endpoints than code expects.
Fix it by adding missing validaion check and print an error if
number of endpoints do not match expected number |
| In the Linux kernel, the following vulnerability has been resolved:
watch_queue: Fix filter limit check
In watch_queue_set_filter(), there are a couple of places where we check
that the filter type value does not exceed what the type_filter bitmap
can hold. One place calculates the number of bits by:
if (tf[i].type >= sizeof(wfilter->type_filter) * 8)
which is fine, but the second does:
if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)
which is not. This can lead to a couple of out-of-bounds writes due to
a too-large type:
(1) __set_bit() on wfilter->type_filter
(2) Writing more elements in wfilter->filters[] than we allocated.
Fix this by just using the proper WATCH_TYPE__NR instead, which is the
number of types we actually know about.
The bug may cause an oops looking something like:
BUG: KASAN: slab-out-of-bounds in watch_queue_set_filter+0x659/0x740
Write of size 4 at addr ffff88800d2c66bc by task watch_queue_oob/611
...
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
...
kasan_report.cold+0x7f/0x11b
...
watch_queue_set_filter+0x659/0x740
...
__x64_sys_ioctl+0x127/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Allocated by task 611:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
watch_queue_set_filter+0x23a/0x740
__x64_sys_ioctl+0x127/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff88800d2c66a0
which belongs to the cache kmalloc-32 of size 32
The buggy address is located 28 bytes inside of
32-byte region [ffff88800d2c66a0, ffff88800d2c66c0) |
| In the Linux kernel, the following vulnerability has been resolved:
net/packet: fix slab-out-of-bounds access in packet_recvmsg()
syzbot found that when an AF_PACKET socket is using PACKET_COPY_THRESH
and mmap operations, tpacket_rcv() is queueing skbs with
garbage in skb->cb[], triggering a too big copy [1]
Presumably, users of af_packet using mmap() already gets correct
metadata from the mapped buffer, we can simply make sure
to clear 12 bytes that might be copied to user space later.
BUG: KASAN: stack-out-of-bounds in memcpy include/linux/fortify-string.h:225 [inline]
BUG: KASAN: stack-out-of-bounds in packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489
Write of size 165 at addr ffffc9000385fb78 by task syz-executor233/3631
CPU: 0 PID: 3631 Comm: syz-executor233 Not tainted 5.17.0-rc7-syzkaller-02396-g0b3660695e80 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0xf/0x336 mm/kasan/report.c:255
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
memcpy+0x39/0x60 mm/kasan/shadow.c:66
memcpy include/linux/fortify-string.h:225 [inline]
packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_recvmsg net/socket.c:962 [inline]
____sys_recvmsg+0x2c4/0x600 net/socket.c:2632
___sys_recvmsg+0x127/0x200 net/socket.c:2674
__sys_recvmsg+0xe2/0x1a0 net/socket.c:2704
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fdfd5954c29
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcf8e71e48 EFLAGS: 00000246 ORIG_RAX: 000000000000002f
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fdfd5954c29
RDX: 0000000000000000 RSI: 0000000020000500 RDI: 0000000000000005
RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d
R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffcf8e71e60
R13: 00000000000f4240 R14: 000000000000c1ff R15: 00007ffcf8e71e54
</TASK>
addr ffffc9000385fb78 is located in stack of task syz-executor233/3631 at offset 32 in frame:
____sys_recvmsg+0x0/0x600 include/linux/uio.h:246
this frame has 1 object:
[32, 160) 'addr'
Memory state around the buggy address:
ffffc9000385fa80: 00 04 f3 f3 f3 f3 f3 00 00 00 00 00 00 00 00 00
ffffc9000385fb00: 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00
>ffffc9000385fb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f3
^
ffffc9000385fc00: f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 f1
ffffc9000385fc80: f1 f1 f1 00 f2 f2 f2 00 f2 f2 f2 00 00 00 00 00
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: rndis: prevent integer overflow in rndis_set_response()
If "BufOffset" is very large the "BufOffset + 8" operation can have an
integer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: ax88179_178a: Fix out-of-bounds accesses in RX fixup
ax88179_rx_fixup() contains several out-of-bounds accesses that can be
triggered by a malicious (or defective) USB device, in particular:
- The metadata array (hdr_off..hdr_off+2*pkt_cnt) can be out of bounds,
causing OOB reads and (on big-endian systems) OOB endianness flips.
- A packet can overlap the metadata array, causing a later OOB
endianness flip to corrupt data used by a cloned SKB that has already
been handed off into the network stack.
- A packet SKB can be constructed whose tail is far beyond its end,
causing out-of-bounds heap data to be considered part of the SKB's
data.
I have tested that this can be used by a malicious USB device to send a
bogus ICMPv6 Echo Request and receive an ICMPv6 Echo Reply in response
that contains random kernel heap data.
It's probably also possible to get OOB writes from this on a
little-endian system somehow - maybe by triggering skb_cow() via IP
options processing -, but I haven't tested that. |