| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Yenkee Hornet Gaming Mouse driver GM312Fltr.sys contains a buffer overrun vulnerability that allows attackers to crash the system by sending oversized input. Attackers can exploit the driver by sending a 2000-byte buffer through DeviceIoControl to trigger a kernel-level system crash. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: use array_index_nospec with indices that come from guest
min and dest_id are guest-controlled indices. Using array_index_nospec()
after the bounds checks clamps these values to mitigate speculative execution
side-channels. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: Fix slab-out-of-bounds in efivarfs_d_compare
Observed on kernel 6.6 (present on master as well):
BUG: KASAN: slab-out-of-bounds in memcmp+0x98/0xd0
Call trace:
kasan_check_range+0xe8/0x190
__asan_loadN+0x1c/0x28
memcmp+0x98/0xd0
efivarfs_d_compare+0x68/0xd8
__d_lookup_rcu_op_compare+0x178/0x218
__d_lookup_rcu+0x1f8/0x228
d_alloc_parallel+0x150/0x648
lookup_open.isra.0+0x5f0/0x8d0
open_last_lookups+0x264/0x828
path_openat+0x130/0x3f8
do_filp_open+0x114/0x248
do_sys_openat2+0x340/0x3c0
__arm64_sys_openat+0x120/0x1a0
If dentry->d_name.len < EFI_VARIABLE_GUID_LEN , 'guid' can become
negative, leadings to oob. The issue can be triggered by parallel
lookups using invalid filename:
T1 T2
lookup_open
->lookup
simple_lookup
d_add
// invalid dentry is added to hash list
lookup_open
d_alloc_parallel
__d_lookup_rcu
__d_lookup_rcu_op_compare
hlist_bl_for_each_entry_rcu
// invalid dentry can be retrieved
->d_compare
efivarfs_d_compare
// oob
Fix it by checking 'guid' before cmp. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: fix slab out-of-bounds access in mt_report_fixup()
A malicious HID device can trigger a slab out-of-bounds during
mt_report_fixup() by passing in report descriptor smaller than
607 bytes. mt_report_fixup() attempts to patch byte offset 607
of the descriptor with 0x25 by first checking if byte offset
607 is 0x15 however it lacks bounds checks to verify if the
descriptor is big enough before conducting this check. Fix
this bug by ensuring the descriptor size is at least 608
bytes before accessing it.
Below is the KASAN splat after the out of bounds access happens:
[ 13.671954] ==================================================================
[ 13.672667] BUG: KASAN: slab-out-of-bounds in mt_report_fixup+0x103/0x110
[ 13.673297] Read of size 1 at addr ffff888103df39df by task kworker/0:1/10
[ 13.673297]
[ 13.673297] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0-00005-gec5d573d83f4-dirty #3
[ 13.673297] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/04
[ 13.673297] Call Trace:
[ 13.673297] <TASK>
[ 13.673297] dump_stack_lvl+0x5f/0x80
[ 13.673297] print_report+0xd1/0x660
[ 13.673297] kasan_report+0xe5/0x120
[ 13.673297] __asan_report_load1_noabort+0x18/0x20
[ 13.673297] mt_report_fixup+0x103/0x110
[ 13.673297] hid_open_report+0x1ef/0x810
[ 13.673297] mt_probe+0x422/0x960
[ 13.673297] hid_device_probe+0x2e2/0x6f0
[ 13.673297] really_probe+0x1c6/0x6b0
[ 13.673297] __driver_probe_device+0x24f/0x310
[ 13.673297] driver_probe_device+0x4e/0x220
[ 13.673297] __device_attach_driver+0x169/0x320
[ 13.673297] bus_for_each_drv+0x11d/0x1b0
[ 13.673297] __device_attach+0x1b8/0x3e0
[ 13.673297] device_initial_probe+0x12/0x20
[ 13.673297] bus_probe_device+0x13d/0x180
[ 13.673297] device_add+0xe3a/0x1670
[ 13.673297] hid_add_device+0x31d/0xa40
[...] |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: check context->notify_page after call to get_user_pages_fast() to avoid GPF
The call to get_user_pages_fast() in vmci_host_setup_notify() can return
NULL context->notify_page causing a GPF. To avoid GPF check if
context->notify_page == NULL and return error if so.
general protection fault, probably for non-canonical address
0xe0009d1000000060: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0x0005088000000300-
0x0005088000000307]
CPU: 2 PID: 26180 Comm: repro_34802241 Not tainted 6.1.0-rc4 #1
Hardware name: Red Hat KVM, BIOS 1.15.0-2.module+el8.6.0 04/01/2014
RIP: 0010:vmci_ctx_check_signal_notify+0x91/0xe0
Call Trace:
<TASK>
vmci_host_unlocked_ioctl+0x362/0x1f40
__x64_sys_ioctl+0x1a1/0x230
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memory-failure: fix VM_BUG_ON_PAGE(PagePoisoned(page)) when unpoison memory
When I did memory failure tests, below panic occurs:
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(page))
kernel BUG at include/linux/page-flags.h:616!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 720 Comm: bash Not tainted 6.10.0-rc1-00195-g148743902568 #40
RIP: 0010:unpoison_memory+0x2f3/0x590
RSP: 0018:ffffa57fc8787d60 EFLAGS: 00000246
RAX: 0000000000000037 RBX: 0000000000000009 RCX: ffff9be25fcdc9c8
RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff9be25fcdc9c0
RBP: 0000000000300000 R08: ffffffffb4956f88 R09: 0000000000009ffb
R10: 0000000000000284 R11: ffffffffb4926fa0 R12: ffffe6b00c000000
R13: ffff9bdb453dfd00 R14: 0000000000000000 R15: fffffffffffffffe
FS: 00007f08f04e4740(0000) GS:ffff9be25fcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000564787a30410 CR3: 000000010d4e2000 CR4: 00000000000006f0
Call Trace:
<TASK>
unpoison_memory+0x2f3/0x590
simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110
debugfs_attr_write+0x42/0x60
full_proxy_write+0x5b/0x80
vfs_write+0xd5/0x540
ksys_write+0x64/0xe0
do_syscall_64+0xb9/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f08f0314887
RSP: 002b:00007ffece710078 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f08f0314887
RDX: 0000000000000009 RSI: 0000564787a30410 RDI: 0000000000000001
RBP: 0000564787a30410 R08: 000000000000fefe R09: 000000007fffffff
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f08f041b780 R14: 00007f08f0417600 R15: 00007f08f0416a00
</TASK>
Modules linked in: hwpoison_inject
---[ end trace 0000000000000000 ]---
RIP: 0010:unpoison_memory+0x2f3/0x590
RSP: 0018:ffffa57fc8787d60 EFLAGS: 00000246
RAX: 0000000000000037 RBX: 0000000000000009 RCX: ffff9be25fcdc9c8
RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff9be25fcdc9c0
RBP: 0000000000300000 R08: ffffffffb4956f88 R09: 0000000000009ffb
R10: 0000000000000284 R11: ffffffffb4926fa0 R12: ffffe6b00c000000
R13: ffff9bdb453dfd00 R14: 0000000000000000 R15: fffffffffffffffe
FS: 00007f08f04e4740(0000) GS:ffff9be25fcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000564787a30410 CR3: 000000010d4e2000 CR4: 00000000000006f0
Kernel panic - not syncing: Fatal exception
Kernel Offset: 0x31c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
---[ end Kernel panic - not syncing: Fatal exception ]---
The root cause is that unpoison_memory() tries to check the PG_HWPoison
flags of an uninitialized page. So VM_BUG_ON_PAGE(PagePoisoned(page)) is
triggered. This can be reproduced by below steps:
1.Offline memory block:
echo offline > /sys/devices/system/memory/memory12/state
2.Get offlined memory pfn:
page-types -b n -rlN
3.Write pfn to unpoison-pfn
echo <pfn> > /sys/kernel/debug/hwpoison/unpoison-pfn
This scenario can be identified by pfn_to_online_page() returning NULL.
And ZONE_DEVICE pages are never expected, so we can simply fail if
pfn_to_online_page() == NULL to fix the bug. |
| Best Practical Request Tracker (RT) before 4.4.9, 5.0.9, and 6.0.2 allows CSV Injection via ticket values when TSV export is used. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Prior to 2.3.1.2, There is a heap-based buffer overflow in SIccCalcOp::Describe() at IccProfLib/IccMpeCalc.cpp. This vulnerability affects users of the iccDEV library who process ICC color profiles. The vulnerability is fixed in 2.3.1.2. |
| Tenda AX-1806 v1.0.0.1 was discovered to contain a stack overflow in the security_5g parameter of the sub_4CA50 function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the serviceName2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the cloneType2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the wanMTU2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the wanSpeed2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| phpgurukul News Portal Project V4.1 has File Upload Vulnerability via upload.php, which enables the upload of files of any format to the server without identity authentication. |
| An out-of-bounds access issue was addressed with improved bounds checking. This issue is fixed in tvOS 26.1, macOS Tahoe 26.1, iOS 26.1 and iPadOS 26.1, iOS 18.7.2 and iPadOS 18.7.2, visionOS 26.1. Processing a maliciously crafted media file may lead to unexpected app termination or corrupt process memory. |
| A buffer overflow vulnerability has been reported to affect HBS 3 Hybrid Backup Sync. If exploited, the vulnerability could allow remote attackers to modify memory or crash processes.
We have already fixed the vulnerability in the following version:
HBS 3 Hybrid Backup Sync 25.1.4.952 and later |
| Dell PowerEdge Server BIOS and Dell iDRAC9, all versions, contains an Information Disclosure vulnerability. A high privileged attacker with remote access could potentially exploit this vulnerability, leading to Information Disclosure. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, an out-of-bounds heap read vulnerability in cryptography_encrypt() occurs when parsing JSON metadata from KMC server responses. The flawed strtok iteration pattern uses ptr + strlen(ptr) + 1 which reads one byte past allocated buffer boundaries when processing short or malformed metadata strings. This issue has been patched in version 1.4.3. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, there is an out-of-bounds heap read vulnerability in cryptography_aead_encrypt(). This issue has been patched in version 1.4.3. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, CryptoLib’s KMC crypto service integration is vulnerable to a heap buffer overflow when decoding Base64-encoded ciphertext/cleartext fields returned by the KMC service. The decode destination buffer is sized using an expected output length (len_data_out), but the Base64 decoder writes output based on the actual Base64 input length and does not enforce any destination size limit. An oversized Base64 string in the KMC JSON response can cause out-of-bounds writes on the heap, resulting in process crash and potentially code execution under certain conditions. This issue has been patched in version 1.4.3. |