| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix a crash in mempool_free
There's a crash in mempool_free when running the lvm test
shell/lvchange-rebuild-raid.sh.
The reason for the crash is this:
* super_written calls atomic_dec_and_test(&mddev->pending_writes) and
wake_up(&mddev->sb_wait). Then it calls rdev_dec_pending(rdev, mddev)
and bio_put(bio).
* so, the process that waited on sb_wait and that is woken up is racing
with bio_put(bio).
* if the process wins the race, it calls bioset_exit before bio_put(bio)
is executed.
* bio_put(bio) attempts to free a bio into a destroyed bio set - causing
a crash in mempool_free.
We fix this bug by moving bio_put before atomic_dec_and_test.
We also move rdev_dec_pending before atomic_dec_and_test as suggested by
Neil Brown.
The function md_end_flush has a similar bug - we must call bio_put before
we decrement the number of in-progress bios.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 11557f0067 P4D 11557f0067 PUD 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 0 PID: 73 Comm: kworker/0:1 Not tainted 6.1.0-rc3 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Workqueue: kdelayd flush_expired_bios [dm_delay]
RIP: 0010:mempool_free+0x47/0x80
Code: 48 89 ef 5b 5d ff e0 f3 c3 48 89 f7 e8 32 45 3f 00 48 63 53 08 48 89 c6 3b 53 04 7d 2d 48 8b 43 10 8d 4a 01 48 89 df 89 4b 08 <48> 89 2c d0 e8 b0 45 3f 00 48 8d 7b 30 5b 5d 31 c9 ba 01 00 00 00
RSP: 0018:ffff88910036bda8 EFLAGS: 00010093
RAX: 0000000000000000 RBX: ffff8891037b65d8 RCX: 0000000000000001
RDX: 0000000000000000 RSI: 0000000000000202 RDI: ffff8891037b65d8
RBP: ffff8891447ba240 R08: 0000000000012908 R09: 00000000003d0900
R10: 0000000000000000 R11: 0000000000173544 R12: ffff889101a14000
R13: ffff8891562ac300 R14: ffff889102b41440 R15: ffffe8ffffa00d05
FS: 0000000000000000(0000) GS:ffff88942fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000001102e99000 CR4: 00000000000006b0
Call Trace:
<TASK>
clone_endio+0xf4/0x1c0 [dm_mod]
clone_endio+0xf4/0x1c0 [dm_mod]
__submit_bio+0x76/0x120
submit_bio_noacct_nocheck+0xb6/0x2a0
flush_expired_bios+0x28/0x2f [dm_delay]
process_one_work+0x1b4/0x300
worker_thread+0x45/0x3e0
? rescuer_thread+0x380/0x380
kthread+0xc2/0x100
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Modules linked in: brd dm_delay dm_raid dm_mod af_packet uvesafb cfbfillrect cfbimgblt cn cfbcopyarea fb font fbdev tun autofs4 binfmt_misc configfs ipv6 virtio_rng virtio_balloon rng_core virtio_net pcspkr net_failover failover qemu_fw_cfg button mousedev raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod sd_mod t10_pi crc64_rocksoft crc64 virtio_scsi scsi_mod evdev psmouse bsg scsi_common [last unloaded: brd]
CR2: 0000000000000000
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm: /proc/pid/smaps_rollup: fix no vma's null-deref
Commit 258f669e7e88 ("mm: /proc/pid/smaps_rollup: convert to single value
seq_file") introduced a null-deref if there are no vma's in the task in
show_smaps_rollup. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: designware: Fix handling of real but unexpected device interrupts
Commit c7b79a752871 ("mfd: intel-lpss: Add Intel Alder Lake PCH-S PCI
IDs") caused a regression on certain Gigabyte motherboards for Intel
Alder Lake-S where system crashes to NULL pointer dereference in
i2c_dw_xfer_msg() when system resumes from S3 sleep state ("deep").
I was able to debug the issue on Gigabyte Z690 AORUS ELITE and made
following notes:
- Issue happens when resuming from S3 but not when resuming from
"s2idle"
- PCI device 00:15.0 == i2c_designware.0 is already in D0 state when
system enters into pci_pm_resume_noirq() while all other i2c_designware
PCI devices are in D3. Devices were runtime suspended and in D3 prior
entering into suspend
- Interrupt comes after pci_pm_resume_noirq() when device interrupts are
re-enabled
- According to register dump the interrupt really comes from the
i2c_designware.0. Controller is enabled, I2C target address register
points to a one detectable I2C device address 0x60 and the
DW_IC_RAW_INTR_STAT register START_DET, STOP_DET, ACTIVITY and
TX_EMPTY bits are set indicating completed I2C transaction.
My guess is that the firmware uses this controller to communicate with
an on-board I2C device during resume but does not disable the controller
before giving control to an operating system.
I was told the UEFI update fixes this but never the less it revealed the
driver is not ready to handle TX_EMPTY (or RX_FULL) interrupt when device
is supposed to be idle and state variables are not set (especially the
dev->msgs pointer which may point to NULL or stale old data).
Introduce a new software status flag STATUS_ACTIVE indicating when the
controller is active in driver point of view. Now treat all interrupts
that occur when is not set as unexpected and mask all interrupts from
the controller. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vkms: Fix null-ptr-deref in vkms_release()
A null-ptr-deref is triggered when it tries to destroy the workqueue in
vkms->output.composer_workq in vkms_release().
KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f]
CPU: 5 PID: 17193 Comm: modprobe Not tainted 6.0.0-11331-gd465bff130bf #24
RIP: 0010:destroy_workqueue+0x2f/0x710
...
Call Trace:
<TASK>
? vkms_config_debugfs_init+0x50/0x50 [vkms]
__devm_drm_dev_alloc+0x15a/0x1c0 [drm]
vkms_init+0x245/0x1000 [vkms]
do_one_initcall+0xd0/0x4f0
do_init_module+0x1a4/0x680
load_module+0x6249/0x7110
__do_sys_finit_module+0x140/0x200
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The reason is that an OOM happened which triggers the destroy of the
workqueue, however, the workqueue is alloced in the later process,
thus a null-ptr-deref happened. A simple call graph is shown as below:
vkms_init()
vkms_create()
devm_drm_dev_alloc()
__devm_drm_dev_alloc()
devm_drm_dev_init()
devm_add_action_or_reset()
devm_add_action() # an error happened
devm_drm_dev_init_release()
drm_dev_put()
kref_put()
drm_dev_release()
vkms_release()
destroy_workqueue() # null-ptr-deref happened
vkms_modeset_init()
vkms_output_init()
vkms_crtc_init() # where the workqueue get allocated
Fix this by checking if composer_workq is NULL before passing it to
the destroy_workqueue() in vkms_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: mux: reg: check return value after calling platform_get_resource()
It will cause null-ptr-deref in resource_size(), if platform_get_resource()
returns NULL, move calling resource_size() after devm_ioremap_resource() that
will check 'res' to avoid null-ptr-deref.
And use devm_platform_get_and_ioremap_resource() to simplify code. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: add missing unregister_netdev() in wilc_netdev_ifc_init()
Fault injection test reports this issue:
kernel BUG at net/core/dev.c:10731!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
Call Trace:
<TASK>
wilc_netdev_ifc_init+0x19f/0x220 [wilc1000 884bf126e9e98af6a708f266a8dffd53f99e4bf5]
wilc_cfg80211_init+0x30c/0x380 [wilc1000 884bf126e9e98af6a708f266a8dffd53f99e4bf5]
wilc_bus_probe+0xad/0x2b0 [wilc1000_spi 1520a7539b6589cc6cde2ae826a523a33f8bacff]
spi_probe+0xe4/0x140
really_probe+0x17e/0x3f0
__driver_probe_device+0xe3/0x170
driver_probe_device+0x49/0x120
The root case here is alloc_ordered_workqueue() fails, but
cfg80211_unregister_netdevice() or unregister_netdev() not be called in
error handling path. To fix add unregister_netdev goto lable to add the
unregister operation in error handling path. |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx88: Fix a null-ptr-deref bug in buffer_prepare()
When the driver calls cx88_risc_buffer() to prepare the buffer, the
function call may fail, resulting in a empty buffer and null-ptr-deref
later in buffer_queue().
The following log can reveal it:
[ 41.822762] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
[ 41.824488] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 41.828027] RIP: 0010:buffer_queue+0xc2/0x500
[ 41.836311] Call Trace:
[ 41.836945] __enqueue_in_driver+0x141/0x360
[ 41.837262] vb2_start_streaming+0x62/0x4a0
[ 41.838216] vb2_core_streamon+0x1da/0x2c0
[ 41.838516] __vb2_init_fileio+0x981/0xbc0
[ 41.839141] __vb2_perform_fileio+0xbf9/0x1120
[ 41.840072] vb2_fop_read+0x20e/0x400
[ 41.840346] v4l2_read+0x215/0x290
[ 41.840603] vfs_read+0x162/0x4c0
Fix this by checking the return value of cx88_risc_buffer()
[hverkuil: fix coding style issues] |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: sfb: fix null pointer access issue when sfb_init() fails
When the default qdisc is sfb, if the qdisc of dev_queue fails to be
inited during mqprio_init(), sfb_reset() is invoked to clear resources.
In this case, the q->qdisc is NULL, and it will cause gpf issue.
The process is as follows:
qdisc_create_dflt()
sfb_init()
tcf_block_get() --->failed, q->qdisc is NULL
...
qdisc_put()
...
sfb_reset()
qdisc_reset(q->qdisc) --->q->qdisc is NULL
ops = qdisc->ops
The following is the Call Trace information:
general protection fault, probably for non-canonical address
0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
RIP: 0010:qdisc_reset+0x2b/0x6f0
Call Trace:
<TASK>
sfb_reset+0x37/0xd0
qdisc_reset+0xed/0x6f0
qdisc_destroy+0x82/0x4c0
qdisc_put+0x9e/0xb0
qdisc_create_dflt+0x2c3/0x4a0
mqprio_init+0xa71/0x1760
qdisc_create+0x3eb/0x1000
tc_modify_qdisc+0x408/0x1720
rtnetlink_rcv_msg+0x38e/0xac0
netlink_rcv_skb+0x12d/0x3a0
netlink_unicast+0x4a2/0x740
netlink_sendmsg+0x826/0xcc0
sock_sendmsg+0xc5/0x100
____sys_sendmsg+0x583/0x690
___sys_sendmsg+0xe8/0x160
__sys_sendmsg+0xbf/0x160
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f2164122d04
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix kfd_process_device_init_vm error handling
Should only destroy the ib_mem and let process cleanup worker to free
the outstanding BOs. Reset the pointer in pdd->qpd structure, to avoid
NULL pointer access in process destroy worker.
BUG: kernel NULL pointer dereference, address: 0000000000000010
Call Trace:
amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel+0x46/0xb0 [amdgpu]
kfd_process_device_destroy_cwsr_dgpu+0x40/0x70 [amdgpu]
kfd_process_destroy_pdds+0x71/0x190 [amdgpu]
kfd_process_wq_release+0x2a2/0x3b0 [amdgpu]
process_one_work+0x2a1/0x600
worker_thread+0x39/0x3d0 |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: wmt-sdmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(), besides, clk_disable_unprepare() also needs be called. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_usb_sdmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, besides, led_classdev_unregister() and pm_runtime_disable() also
need be called. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix null-ptr-deref in ext4_write_info
I caught a null-ptr-deref bug as follows:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339
RIP: 0010:ext4_write_info+0x53/0x1b0
[...]
Call Trace:
dquot_writeback_dquots+0x341/0x9a0
ext4_sync_fs+0x19e/0x800
__sync_filesystem+0x83/0x100
sync_filesystem+0x89/0xf0
generic_shutdown_super+0x79/0x3e0
kill_block_super+0xa1/0x110
deactivate_locked_super+0xac/0x130
deactivate_super+0xb6/0xd0
cleanup_mnt+0x289/0x400
__cleanup_mnt+0x16/0x20
task_work_run+0x11c/0x1c0
exit_to_user_mode_prepare+0x203/0x210
syscall_exit_to_user_mode+0x5b/0x3a0
do_syscall_64+0x59/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
==================================================================
Above issue may happen as follows:
-------------------------------------
exit_to_user_mode_prepare
task_work_run
__cleanup_mnt
cleanup_mnt
deactivate_super
deactivate_locked_super
kill_block_super
generic_shutdown_super
shrink_dcache_for_umount
dentry = sb->s_root
sb->s_root = NULL <--- Here set NULL
sync_filesystem
__sync_filesystem
sb->s_op->sync_fs > ext4_sync_fs
dquot_writeback_dquots
sb->dq_op->write_info > ext4_write_info
ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2)
d_inode(sb->s_root)
s_root->d_inode <--- Null pointer dereference
To solve this problem, we use ext4_journal_start_sb directly
to avoid s_root being used. |
| Substance3D - Modeler versions 1.22.4 and earlier are affected by a NULL Pointer Dereference vulnerability that could lead to application denial-of-service. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below are prone to have Undefined Behavior (UB) and Out of Memory errors. This issue is fixed in version 2.3.1.2. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix null pointer dereference in ovl_permission()
Following process:
P1 P2
path_lookupat
link_path_walk
inode_permission
ovl_permission
ovl_i_path_real(inode, &realpath)
path->dentry = ovl_i_dentry_upper(inode)
drop_cache
__dentry_kill(ovl_dentry)
iput(ovl_inode)
ovl_destroy_inode(ovl_inode)
dput(oi->__upperdentry)
dentry_kill(upperdentry)
dentry_unlink_inode
upperdentry->d_inode = NULL
realinode = d_inode(realpath.dentry) // return NULL
inode_permission(realinode)
inode->i_sb // NULL pointer dereference
, will trigger an null pointer dereference at realinode:
[ 335.664979] BUG: kernel NULL pointer dereference,
address: 0000000000000002
[ 335.668032] CPU: 0 PID: 2592 Comm: ls Not tainted 6.3.0
[ 335.669956] RIP: 0010:inode_permission+0x33/0x2c0
[ 335.678939] Call Trace:
[ 335.679165] <TASK>
[ 335.679371] ovl_permission+0xde/0x320
[ 335.679723] inode_permission+0x15e/0x2c0
[ 335.680090] link_path_walk+0x115/0x550
[ 335.680771] path_lookupat.isra.0+0xb2/0x200
[ 335.681170] filename_lookup+0xda/0x240
[ 335.681922] vfs_statx+0xa6/0x1f0
[ 335.682233] vfs_fstatat+0x7b/0xb0
Fetch a reproducer in [Link].
Use the helper ovl_i_path_realinode() to get realinode and then do
non-nullptr checking. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: pcie: fix NULL pointer dereference in iwl_pcie_irq_rx_msix_handler()
rxq can be NULL only when trans_pcie->rxq is NULL and entry->entry
is zero. For the case when entry->entry is not equal to 0, rxq
won't be NULL even if trans_pcie->rxq is NULL. Modify checker to
check for trans_pcie->rxq. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: dmi-sysfs: Fix null-ptr-deref in dmi_sysfs_register_handle
KASAN reported a null-ptr-deref error:
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 0 PID: 1373 Comm: modprobe
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:dmi_sysfs_entry_release
...
Call Trace:
<TASK>
kobject_put
dmi_sysfs_register_handle (drivers/firmware/dmi-sysfs.c:540) dmi_sysfs
dmi_decode_table (drivers/firmware/dmi_scan.c:133)
dmi_walk (drivers/firmware/dmi_scan.c:1115)
dmi_sysfs_init (drivers/firmware/dmi-sysfs.c:149) dmi_sysfs
do_one_initcall (init/main.c:1296)
...
Kernel panic - not syncing: Fatal exception
Kernel Offset: 0x4000000 from 0xffffffff81000000
---[ end Kernel panic - not syncing: Fatal exception ]---
It is because previous patch added kobject_put() to release the memory
which will call dmi_sysfs_entry_release() and list_del().
However, list_add_tail(entry->list) is called after the error block,
so the list_head is uninitialized and cannot be deleted.
Move error handling to after list_add_tail to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: install stub fence into potential unused fence pointers
When using cpu to update page tables, vm update fences are unused.
Install stub fence into these fence pointers instead of NULL
to avoid NULL dereference when calling dma_fence_wait() on them. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: storvsc: Fix handling of virtual Fibre Channel timeouts
Hyper-V provides the ability to connect Fibre Channel LUNs to the host
system and present them in a guest VM as a SCSI device. I/O to the vFC
device is handled by the storvsc driver. The storvsc driver includes a
partial integration with the FC transport implemented in the generic
portion of the Linux SCSI subsystem so that FC attributes can be displayed
in /sys. However, the partial integration means that some aspects of vFC
don't work properly. Unfortunately, a full and correct integration isn't
practical because of limitations in what Hyper-V provides to the guest.
In particular, in the context of Hyper-V storvsc, the FC transport timeout
function fc_eh_timed_out() causes a kernel panic because it can't find the
rport and dereferences a NULL pointer. The original patch that added the
call from storvsc_eh_timed_out() to fc_eh_timed_out() is faulty in this
regard.
In many cases a timeout is due to a transient condition, so the situation
can be improved by just continuing to wait like with other I/O requests
issued by storvsc, and avoiding the guaranteed panic. For a permanent
failure, continuing to wait may result in a hung thread instead of a panic,
which again may be better.
So fix the panic by removing the storvsc call to fc_eh_timed_out(). This
allows storvsc to keep waiting for a response. The change has been tested
by users who experienced a panic in fc_eh_timed_out() due to transient
timeouts, and it solves their problem.
In the future we may want to deprecate the vFC functionality in storvsc
since it can't be fully fixed. But it has current users for whom it is
working well enough, so it should probably stay for a while longer. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: tw68: Fix null-ptr-deref bug in buf prepare and finish
When the driver calls tw68_risc_buffer() to prepare the buffer, the
function call dma_alloc_coherent may fail, resulting in a empty buffer
buf->cpu. Later when we free the buffer or access the buffer, null ptr
deref is triggered.
This bug is similar to the following one:
https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71.
We believe the bug can be also dynamically triggered from user side.
Similarly, we fix this by checking the return value of tw68_risc_buffer()
and the value of buf->cpu before buffer free. |