Search Results (6901 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-44967 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/mgag200: Bind I2C lifetime to DRM device Managed cleanup with devm_add_action_or_reset() will release the I2C adapter when the underlying Linux device goes away. But the connector still refers to it, so this cleanup leaves behind a stale pointer in struct drm_connector.ddc. Bind the lifetime of the I2C adapter to the connector's lifetime by using DRM's managed release. When the DRM device goes away (after the Linux device) DRM will first clean up the connector and then clean up the I2C adapter.
CVE-2024-44946 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kcm: Serialise kcm_sendmsg() for the same socket. syzkaller reported UAF in kcm_release(). [0] The scenario is 1. Thread A builds a skb with MSG_MORE and sets kcm->seq_skb. 2. Thread A resumes building skb from kcm->seq_skb but is blocked by sk_stream_wait_memory() 3. Thread B calls sendmsg() concurrently, finishes building kcm->seq_skb and puts the skb to the write queue 4. Thread A faces an error and finally frees skb that is already in the write queue 5. kcm_release() does double-free the skb in the write queue When a thread is building a MSG_MORE skb, another thread must not touch it. Let's add a per-sk mutex and serialise kcm_sendmsg(). [0]: BUG: KASAN: slab-use-after-free in __skb_unlink include/linux/skbuff.h:2366 [inline] BUG: KASAN: slab-use-after-free in __skb_dequeue include/linux/skbuff.h:2385 [inline] BUG: KASAN: slab-use-after-free in __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline] BUG: KASAN: slab-use-after-free in __skb_queue_purge include/linux/skbuff.h:3181 [inline] BUG: KASAN: slab-use-after-free in kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691 Read of size 8 at addr ffff0000ced0fc80 by task syz-executor329/6167 CPU: 1 PID: 6167 Comm: syz-executor329 Tainted: G B 6.8.0-rc5-syzkaller-g9abbc24128bc #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call trace: dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:291 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:298 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd0/0x124 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0x178/0x518 mm/kasan/report.c:488 kasan_report+0xd8/0x138 mm/kasan/report.c:601 __asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381 __skb_unlink include/linux/skbuff.h:2366 [inline] __skb_dequeue include/linux/skbuff.h:2385 [inline] __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline] __skb_queue_purge include/linux/skbuff.h:3181 [inline] kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691 __sock_release net/socket.c:659 [inline] sock_close+0xa4/0x1e8 net/socket.c:1421 __fput+0x30c/0x738 fs/file_table.c:376 ____fput+0x20/0x30 fs/file_table.c:404 task_work_run+0x230/0x2e0 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x618/0x1f64 kernel/exit.c:871 do_group_exit+0x194/0x22c kernel/exit.c:1020 get_signal+0x1500/0x15ec kernel/signal.c:2893 do_signal+0x23c/0x3b44 arch/arm64/kernel/signal.c:1249 do_notify_resume+0x74/0x1f4 arch/arm64/kernel/entry-common.c:148 exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline] exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline] el0_svc+0xac/0x168 arch/arm64/kernel/entry-common.c:713 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 Allocated by task 6166: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x40/0x78 mm/kasan/common.c:68 kasan_save_alloc_info+0x70/0x84 mm/kasan/generic.c:626 unpoison_slab_object mm/kasan/common.c:314 [inline] __kasan_slab_alloc+0x74/0x8c mm/kasan/common.c:340 kasan_slab_alloc include/linux/kasan.h:201 [inline] slab_post_alloc_hook mm/slub.c:3813 [inline] slab_alloc_node mm/slub.c:3860 [inline] kmem_cache_alloc_node+0x204/0x4c0 mm/slub.c:3903 __alloc_skb+0x19c/0x3d8 net/core/skbuff.c:641 alloc_skb include/linux/skbuff.h:1296 [inline] kcm_sendmsg+0x1d3c/0x2124 net/kcm/kcmsock.c:783 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] sock_sendmsg+0x220/0x2c0 net/socket.c:768 splice_to_socket+0x7cc/0xd58 fs/splice.c:889 do_splice_from fs/splice.c:941 [inline] direct_splice_actor+0xec/0x1d8 fs/splice.c:1164 splice_direct_to_actor+0x438/0xa0c fs/splice.c:1108 do_splice_direct_actor ---truncated---
CVE-2024-44934 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: bridge: mcast: wait for previous gc cycles when removing port syzbot hit a use-after-free[1] which is caused because the bridge doesn't make sure that all previous garbage has been collected when removing a port. What happens is: CPU 1 CPU 2 start gc cycle remove port acquire gc lock first wait for lock call br_multicasg_gc() directly acquire lock now but free port the port can be freed while grp timers still running Make sure all previous gc cycles have finished by using flush_work before freeing the port. [1] BUG: KASAN: slab-use-after-free in br_multicast_port_group_expired+0x4c0/0x550 net/bridge/br_multicast.c:861 Read of size 8 at addr ffff888071d6d000 by task syz.5.1232/9699 CPU: 1 PID: 9699 Comm: syz.5.1232 Not tainted 6.10.0-rc5-syzkaller-00021-g24ca36a562d6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc3/0x620 mm/kasan/report.c:488 kasan_report+0xd9/0x110 mm/kasan/report.c:601 br_multicast_port_group_expired+0x4c0/0x550 net/bridge/br_multicast.c:861 call_timer_fn+0x1a3/0x610 kernel/time/timer.c:1792 expire_timers kernel/time/timer.c:1843 [inline] __run_timers+0x74b/0xaf0 kernel/time/timer.c:2417 __run_timer_base kernel/time/timer.c:2428 [inline] __run_timer_base kernel/time/timer.c:2421 [inline] run_timer_base+0x111/0x190 kernel/time/timer.c:2437
CVE-2024-44285 1 Apple 5 Ipados, Iphone Os, Tvos and 2 more 2025-11-03 8.4 High
A use-after-free issue was addressed with improved memory management. This issue is fixed in iOS 18.1 and iPadOS 18.1, watchOS 11.1, visionOS 2.1, tvOS 18.1. An app may be able to cause unexpected system termination or corrupt kernel memory.
CVE-2025-30427 2 Apple, Redhat 13 Ipados, Iphone Os, Macos and 10 more 2025-11-03 4.3 Medium
A use-after-free issue was addressed with improved memory management. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash.
CVE-2025-24855 2 Redhat, Xmlsoft 8 Enterprise Linux, Openshift, Rhel Aus and 5 more 2025-11-03 7.8 High
numbers.c in libxslt before 1.1.43 has a use-after-free because, in nested XPath evaluations, an XPath context node can be modified but never restored. This is related to xsltNumberFormatGetValue, xsltEvalXPathPredicate, xsltEvalXPathStringNs, and xsltComputeSortResultInternal.
CVE-2024-43853 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: Prevent UAF in proc_cpuset_show() An UAF can happen when /proc/cpuset is read as reported in [1]. This can be reproduced by the following methods: 1.add an mdelay(1000) before acquiring the cgroup_lock In the cgroup_path_ns function. 2.$cat /proc/<pid>/cpuset repeatly. 3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/ $umount /sys/fs/cgroup/cpuset/ repeatly. The race that cause this bug can be shown as below: (umount) | (cat /proc/<pid>/cpuset) css_release | proc_cpuset_show css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id); css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...); cgroup_destroy_root | mutex_lock(&cgroup_mutex); rebind_subsystems | cgroup_free_root | | // cgrp was freed, UAF | cgroup_path_ns_locked(cgrp,..); When the cpuset is initialized, the root node top_cpuset.css.cgrp will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated &cgroup_root.cgrp. When the umount operation is executed, top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp. The problem is that when rebinding to cgrp_dfl_root, there are cases where the cgroup_root allocated by setting up the root for cgroup v1 is cached. This could lead to a Use-After-Free (UAF) if it is subsequently freed. The descendant cgroups of cgroup v1 can only be freed after the css is released. However, the css of the root will never be released, yet the cgroup_root should be freed when it is unmounted. This means that obtaining a reference to the css of the root does not guarantee that css.cgrp->root will not be freed. Fix this problem by using rcu_read_lock in proc_cpuset_show(). As cgroup_root is kfree_rcu after commit d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU safe"), css->cgroup won't be freed during the critical section. To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to replace task_get_css with task_css. [1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd
CVE-2024-43830 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: leds: trigger: Unregister sysfs attributes before calling deactivate() Triggers which have trigger specific sysfs attributes typically store related data in trigger-data allocated by the activate() callback and freed by the deactivate() callback. Calling device_remove_groups() after calling deactivate() leaves a window where the sysfs attributes show/store functions could be called after deactivation and then operate on the just freed trigger-data. Move the device_remove_groups() call to before deactivate() to close this race window. This also makes the deactivation path properly do things in reverse order of the activation path which calls the activate() callback before calling device_add_groups().
CVE-2024-42331 1 Zabbix 1 Zabbix 2025-11-03 3.3 Low
In the src/libs/zbxembed/browser.c file, the es_browser_ctor method retrieves a heap pointer from the Duktape JavaScript engine. This heap pointer is subsequently utilized by the browser_push_error method in the src/libs/zbxembed/browser_error.c file. A use-after-free bug can occur at this stage if the wd->browser heap pointer is freed by garbage collection.
CVE-2024-42314 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when adding pages to compressed bio At add_ra_bio_pages() we are accessing the extent map to calculate 'add_size' after we dropped our reference on the extent map, resulting in a use-after-free. Fix this by computing 'add_size' before dropping our extent map reference.
CVE-2024-42313 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: media: venus: fix use after free in vdec_close There appears to be a possible use after free with vdec_close(). The firmware will add buffer release work to the work queue through HFI callbacks as a normal part of decoding. Randomly closing the decoder device from userspace during normal decoding can incur a read after free for inst. Fix it by cancelling the work in vdec_close.
CVE-2024-42302 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: PCI/DPC: Fix use-after-free on concurrent DPC and hot-removal Keith reports a use-after-free when a DPC event occurs concurrently to hot-removal of the same portion of the hierarchy: The dpc_handler() awaits readiness of the secondary bus below the Downstream Port where the DPC event occurred. To do so, it polls the config space of the first child device on the secondary bus. If that child device is concurrently removed, accesses to its struct pci_dev cause the kernel to oops. That's because pci_bridge_wait_for_secondary_bus() neglects to hold a reference on the child device. Before v6.3, the function was only called on resume from system sleep or on runtime resume. Holding a reference wasn't necessary back then because the pciehp IRQ thread could never run concurrently. (On resume from system sleep, IRQs are not enabled until after the resume_noirq phase. And runtime resume is always awaited before a PCI device is removed.) However starting with v6.3, pci_bridge_wait_for_secondary_bus() is also called on a DPC event. Commit 53b54ad074de ("PCI/DPC: Await readiness of secondary bus after reset"), which introduced that, failed to appreciate that pci_bridge_wait_for_secondary_bus() now needs to hold a reference on the child device because dpc_handler() and pciehp may indeed run concurrently. The commit was backported to v5.10+ stable kernels, so that's the oldest one affected. Add the missing reference acquisition. Abridged stack trace: BUG: unable to handle page fault for address: 00000000091400c0 CPU: 15 PID: 2464 Comm: irq/53-pcie-dpc 6.9.0 RIP: pci_bus_read_config_dword+0x17/0x50 pci_dev_wait() pci_bridge_wait_for_secondary_bus() dpc_reset_link() pcie_do_recovery() dpc_handler()
CVE-2024-42285 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/iwcm: Fix a use-after-free related to destroying CM IDs iw_conn_req_handler() associates a new struct rdma_id_private (conn_id) with an existing struct iw_cm_id (cm_id) as follows: conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; rdma_destroy_id() frees both the cm_id and the struct rdma_id_private. Make sure that cm_work_handler() does not trigger a use-after-free by only freeing of the struct rdma_id_private after all pending work has finished.
CVE-2024-42280 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mISDN: Fix a use after free in hfcmulti_tx() Don't dereference *sp after calling dev_kfree_skb(*sp).
CVE-2024-42271 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net/iucv: fix use after free in iucv_sock_close() iucv_sever_path() is called from process context and from bh context. iucv->path is used as indicator whether somebody else is taking care of severing the path (or it is already removed / never existed). This needs to be done with atomic compare and swap, otherwise there is a small window where iucv_sock_close() will try to work with a path that has already been severed and freed by iucv_callback_connrej() called by iucv_tasklet_fn(). Example: [452744.123844] Call Trace: [452744.123845] ([<0000001e87f03880>] 0x1e87f03880) [452744.123966] [<00000000d593001e>] iucv_path_sever+0x96/0x138 [452744.124330] [<000003ff801ddbca>] iucv_sever_path+0xc2/0xd0 [af_iucv] [452744.124336] [<000003ff801e01b6>] iucv_sock_close+0xa6/0x310 [af_iucv] [452744.124341] [<000003ff801e08cc>] iucv_sock_release+0x3c/0xd0 [af_iucv] [452744.124345] [<00000000d574794e>] __sock_release+0x5e/0xe8 [452744.124815] [<00000000d5747a0c>] sock_close+0x34/0x48 [452744.124820] [<00000000d5421642>] __fput+0xba/0x268 [452744.124826] [<00000000d51b382c>] task_work_run+0xbc/0xf0 [452744.124832] [<00000000d5145710>] do_notify_resume+0x88/0x90 [452744.124841] [<00000000d5978096>] system_call+0xe2/0x2c8 [452744.125319] Last Breaking-Event-Address: [452744.125321] [<00000000d5930018>] iucv_path_sever+0x90/0x138 [452744.125324] [452744.125325] Kernel panic - not syncing: Fatal exception in interrupt Note that bh_lock_sock() is not serializing the tasklet context against process context, because the check for sock_owned_by_user() and corresponding handling is missing. Ideas for a future clean-up patch: A) Correct usage of bh_lock_sock() in tasklet context, as described in Re-enqueue, if needed. This may require adding return values to the tasklet functions and thus changes to all users of iucv. B) Change iucv tasklet into worker and use only lock_sock() in af_iucv.
CVE-2024-42109 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: unconditionally flush pending work before notifier syzbot reports: KASAN: slab-uaf in nft_ctx_update include/net/netfilter/nf_tables.h:1831 KASAN: slab-uaf in nft_commit_release net/netfilter/nf_tables_api.c:9530 KASAN: slab-uaf int nf_tables_trans_destroy_work+0x152b/0x1750 net/netfilter/nf_tables_api.c:9597 Read of size 2 at addr ffff88802b0051c4 by task kworker/1:1/45 [..] Workqueue: events nf_tables_trans_destroy_work Call Trace: nft_ctx_update include/net/netfilter/nf_tables.h:1831 [inline] nft_commit_release net/netfilter/nf_tables_api.c:9530 [inline] nf_tables_trans_destroy_work+0x152b/0x1750 net/netfilter/nf_tables_api.c:9597 Problem is that the notifier does a conditional flush, but its possible that the table-to-be-removed is still referenced by transactions being processed by the worker, so we need to flush unconditionally. We could make the flush_work depend on whether we found a table to delete in nf-next to avoid the flush for most cases. AFAICS this problem is only exposed in nf-next, with commit e169285f8c56 ("netfilter: nf_tables: do not store nft_ctx in transaction objects"), with this commit applied there is an unconditional fetch of table->family which is whats triggering the above splat.
CVE-2024-42073 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_buffers: Fix memory corruptions on Spectrum-4 systems The following two shared buffer operations make use of the Shared Buffer Status Register (SBSR): # devlink sb occupancy snapshot pci/0000:01:00.0 # devlink sb occupancy clearmax pci/0000:01:00.0 The register has two masks of 256 bits to denote on which ingress / egress ports the register should operate on. Spectrum-4 has more than 256 ports, so the register was extended by cited commit with a new 'port_page' field. However, when filling the register's payload, the driver specifies the ports as absolute numbers and not relative to the first port of the port page, resulting in memory corruptions [1]. Fix by specifying the ports relative to the first port of the port page. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0 Read of size 1 at addr ffff8881068cb00f by task devlink/1566 [...] Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0 mlxsw_devlink_sb_occ_snapshot+0x75/0xb0 devlink_nl_sb_occ_snapshot_doit+0x1f9/0x2a0 genl_family_rcv_msg_doit+0x20c/0x300 genl_rcv_msg+0x567/0x800 netlink_rcv_skb+0x170/0x450 genl_rcv+0x2d/0x40 netlink_unicast+0x547/0x830 netlink_sendmsg+0x8d4/0xdb0 __sys_sendto+0x49b/0x510 __x64_sys_sendto+0xe5/0x1c0 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f [...] Allocated by task 1: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 copy_verifier_state+0xbc2/0xfb0 do_check_common+0x2c51/0xc7e0 bpf_check+0x5107/0x9960 bpf_prog_load+0xf0e/0x2690 __sys_bpf+0x1a61/0x49d0 __x64_sys_bpf+0x7d/0xc0 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 1: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x109/0x170 __kasan_slab_free+0x14/0x30 kfree+0xca/0x2b0 free_verifier_state+0xce/0x270 do_check_common+0x4828/0xc7e0 bpf_check+0x5107/0x9960 bpf_prog_load+0xf0e/0x2690 __sys_bpf+0x1a61/0x49d0 __x64_sys_bpf+0x7d/0xc0 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2024-41096 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: PCI/MSI: Fix UAF in msi_capability_init KFENCE reports the following UAF: BUG: KFENCE: use-after-free read in __pci_enable_msi_range+0x2c0/0x488 Use-after-free read at 0x0000000024629571 (in kfence-#12): __pci_enable_msi_range+0x2c0/0x488 pci_alloc_irq_vectors_affinity+0xec/0x14c pci_alloc_irq_vectors+0x18/0x28 kfence-#12: 0x0000000008614900-0x00000000e06c228d, size=104, cache=kmalloc-128 allocated by task 81 on cpu 7 at 10.808142s: __kmem_cache_alloc_node+0x1f0/0x2bc kmalloc_trace+0x44/0x138 msi_alloc_desc+0x3c/0x9c msi_domain_insert_msi_desc+0x30/0x78 msi_setup_msi_desc+0x13c/0x184 __pci_enable_msi_range+0x258/0x488 pci_alloc_irq_vectors_affinity+0xec/0x14c pci_alloc_irq_vectors+0x18/0x28 freed by task 81 on cpu 7 at 10.811436s: msi_domain_free_descs+0xd4/0x10c msi_domain_free_locked.part.0+0xc0/0x1d8 msi_domain_alloc_irqs_all_locked+0xb4/0xbc pci_msi_setup_msi_irqs+0x30/0x4c __pci_enable_msi_range+0x2a8/0x488 pci_alloc_irq_vectors_affinity+0xec/0x14c pci_alloc_irq_vectors+0x18/0x28 Descriptor allocation done in: __pci_enable_msi_range msi_capability_init msi_setup_msi_desc msi_insert_msi_desc msi_domain_insert_msi_desc msi_alloc_desc ... Freed in case of failure in __msi_domain_alloc_locked() __pci_enable_msi_range msi_capability_init pci_msi_setup_msi_irqs msi_domain_alloc_irqs_all_locked msi_domain_alloc_locked __msi_domain_alloc_locked => fails msi_domain_free_locked ... That failure propagates back to pci_msi_setup_msi_irqs() in msi_capability_init() which accesses the descriptor for unmasking in the error exit path. Cure it by copying the descriptor and using the copy for the error exit path unmask operation. [ tglx: Massaged change log ]
CVE-2024-41092 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gt: Fix potential UAF by revoke of fence registers CI has been sporadically reporting the following issue triggered by igt@i915_selftest@live@hangcheck on ADL-P and similar machines: <6> [414.049203] i915: Running intel_hangcheck_live_selftests/igt_reset_evict_fence ... <6> [414.068804] i915 0000:00:02.0: [drm] GT0: GUC: submission enabled <6> [414.068812] i915 0000:00:02.0: [drm] GT0: GUC: SLPC enabled <3> [414.070354] Unable to pin Y-tiled fence; err:-4 <3> [414.071282] i915_vma_revoke_fence:301 GEM_BUG_ON(!i915_active_is_idle(&fence->active)) ... <4>[ 609.603992] ------------[ cut here ]------------ <2>[ 609.603995] kernel BUG at drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c:301! <4>[ 609.604003] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI <4>[ 609.604006] CPU: 0 PID: 268 Comm: kworker/u64:3 Tainted: G U W 6.9.0-CI_DRM_14785-g1ba62f8cea9c+ #1 <4>[ 609.604008] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023 <4>[ 609.604010] Workqueue: i915 __i915_gem_free_work [i915] <4>[ 609.604149] RIP: 0010:i915_vma_revoke_fence+0x187/0x1f0 [i915] ... <4>[ 609.604271] Call Trace: <4>[ 609.604273] <TASK> ... <4>[ 609.604716] __i915_vma_evict+0x2e9/0x550 [i915] <4>[ 609.604852] __i915_vma_unbind+0x7c/0x160 [i915] <4>[ 609.604977] force_unbind+0x24/0xa0 [i915] <4>[ 609.605098] i915_vma_destroy+0x2f/0xa0 [i915] <4>[ 609.605210] __i915_gem_object_pages_fini+0x51/0x2f0 [i915] <4>[ 609.605330] __i915_gem_free_objects.isra.0+0x6a/0xc0 [i915] <4>[ 609.605440] process_scheduled_works+0x351/0x690 ... In the past, there were similar failures reported by CI from other IGT tests, observed on other platforms. Before commit 63baf4f3d587 ("drm/i915/gt: Only wait for GPU activity before unbinding a GGTT fence"), i915_vma_revoke_fence() was waiting for idleness of vma->active via fence_update(). That commit introduced vma->fence->active in order for the fence_update() to be able to wait selectively on that one instead of vma->active since only idleness of fence registers was needed. But then, another commit 0d86ee35097a ("drm/i915/gt: Make fence revocation unequivocal") replaced the call to fence_update() in i915_vma_revoke_fence() with only fence_write(), and also added that GEM_BUG_ON(!i915_active_is_idle(&fence->active)) in front. No justification was provided on why we might then expect idleness of vma->fence->active without first waiting on it. The issue can be potentially caused by a race among revocation of fence registers on one side and sequential execution of signal callbacks invoked on completion of a request that was using them on the other, still processed in parallel to revocation of those fence registers. Fix it by waiting for idleness of vma->fence->active in i915_vma_revoke_fence(). (cherry picked from commit 24bb052d3dd499c5956abad5f7d8e4fd07da7fb1)
CVE-2024-41074 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cachefiles: Set object to close if ondemand_id < 0 in copen If copen is maliciously called in the user mode, it may delete the request corresponding to the random id. And the request may have not been read yet. Note that when the object is set to reopen, the open request will be done with the still reopen state in above case. As a result, the request corresponding to this object is always skipped in select_req function, so the read request is never completed and blocks other process. Fix this issue by simply set object to close if its id < 0 in copen.