| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IBM Cloud Pak System displays sensitive information in user messages that could aid in further attacks against the system. |
| The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. Prior to version 0.18.18, a path traversal vulnerability in the partition_msg function allows an attacker to write or overwrite arbitrary files on the filesystem when processing malicious MSG files with attachments. This issue has been patched in version 0.18.18. |
| Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4. |
| In the Linux kernel, the following vulnerability has been resolved:
pNFS: Fix a deadlock when returning a delegation during open()
Ben Coddington reports seeing a hang in the following stack trace:
0 [ffffd0b50e1774e0] __schedule at ffffffff9ca05415
1 [ffffd0b50e177548] schedule at ffffffff9ca05717
2 [ffffd0b50e177558] bit_wait at ffffffff9ca061e1
3 [ffffd0b50e177568] __wait_on_bit at ffffffff9ca05cfb
4 [ffffd0b50e1775c8] out_of_line_wait_on_bit at ffffffff9ca05ea5
5 [ffffd0b50e177618] pnfs_roc at ffffffffc154207b [nfsv4]
6 [ffffd0b50e1776b8] _nfs4_proc_delegreturn at ffffffffc1506586 [nfsv4]
7 [ffffd0b50e177788] nfs4_proc_delegreturn at ffffffffc1507480 [nfsv4]
8 [ffffd0b50e1777f8] nfs_do_return_delegation at ffffffffc1523e41 [nfsv4]
9 [ffffd0b50e177838] nfs_inode_set_delegation at ffffffffc1524a75 [nfsv4]
10 [ffffd0b50e177888] nfs4_process_delegation at ffffffffc14f41dd [nfsv4]
11 [ffffd0b50e1778a0] _nfs4_opendata_to_nfs4_state at ffffffffc1503edf [nfsv4]
12 [ffffd0b50e1778c0] _nfs4_open_and_get_state at ffffffffc1504e56 [nfsv4]
13 [ffffd0b50e177978] _nfs4_do_open at ffffffffc15051b8 [nfsv4]
14 [ffffd0b50e1779f8] nfs4_do_open at ffffffffc150559c [nfsv4]
15 [ffffd0b50e177a80] nfs4_atomic_open at ffffffffc15057fb [nfsv4]
16 [ffffd0b50e177ad0] nfs4_file_open at ffffffffc15219be [nfsv4]
17 [ffffd0b50e177b78] do_dentry_open at ffffffff9c09e6ea
18 [ffffd0b50e177ba8] vfs_open at ffffffff9c0a082e
19 [ffffd0b50e177bd0] dentry_open at ffffffff9c0a0935
The issue is that the delegreturn is being asked to wait for a layout
return that cannot complete because a state recovery was initiated. The
state recovery cannot complete until the open() finishes processing the
delegations it was given.
The solution is to propagate the existing flags that indicate a
non-blocking call to the function pnfs_roc(), so that it knows not to
wait in this situation. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Do not over-allocate ftrace memory
The pg_remaining calculation in ftrace_process_locs() assumes that
ENTRIES_PER_PAGE multiplied by 2^order equals the actual capacity of the
allocated page group. However, ENTRIES_PER_PAGE is PAGE_SIZE / ENTRY_SIZE
(integer division). When PAGE_SIZE is not a multiple of ENTRY_SIZE (e.g.
4096 / 24 = 170 with remainder 16), high-order allocations (like 256 pages)
have significantly more capacity than 256 * 170. This leads to pg_remaining
being underestimated, which in turn makes skip (derived from skipped -
pg_remaining) larger than expected, causing the WARN(skip != remaining)
to trigger.
Extra allocated pages for ftrace: 2 with 654 skipped
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7295 ftrace_process_locs+0x5bf/0x5e0
A similar problem in ftrace_allocate_records() can result in allocating
too many pages. This can trigger the second warning in
ftrace_process_locs().
Extra allocated pages for ftrace
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7276 ftrace_process_locs+0x548/0x580
Use the actual capacity of a page group to determine the number of pages
to allocate. Have ftrace_allocate_pages() return the number of allocated
pages to avoid having to calculate it. Use the actual page group capacity
when validating the number of unused pages due to skipped entries.
Drop the definition of ENTRIES_PER_PAGE since it is no longer used. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Sanitize payload size to prevent member overflow
In qla27xx_copy_fpin_pkt() and qla27xx_copy_multiple_pkt(), the frame_size
reported by firmware is used to calculate the copy length into
item->iocb. However, the iocb member is defined as a fixed-size 64-byte
array within struct purex_item.
If the reported frame_size exceeds 64 bytes, subsequent memcpy calls will
overflow the iocb member boundary. While extra memory might be allocated,
this cross-member write is unsafe and triggers warnings under
CONFIG_FORTIFY_SOURCE.
Fix this by capping total_bytes to the size of the iocb member (64 bytes)
before allocation and copying. This ensures all copies remain within the
bounds of the destination structure member. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: Fix memory leak in wbrf_record()
The tmp buffer is allocated using kcalloc() but is not freed if
acpi_evaluate_dsm() fails. This causes a memory leak in the error path.
Fix this by explicitly freeing the tmp buffer in the error handling
path of acpi_evaluate_dsm(). |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix recvmsg() unconditional requeue
If rxrpc_recvmsg() fails because MSG_DONTWAIT was specified but the call at
the front of the recvmsg queue already has its mutex locked, it requeues
the call - whether or not the call is already queued. The call may be on
the queue because MSG_PEEK was also passed and so the call was not dequeued
or because the I/O thread requeued it.
The unconditional requeue may then corrupt the recvmsg queue, leading to
things like UAFs or refcount underruns.
Fix this by only requeuing the call if it isn't already on the queue - and
moving it to the front if it is already queued. If we don't queue it, we
have to put the ref we obtained by dequeuing it.
Also, MSG_PEEK doesn't dequeue the call so shouldn't call
rxrpc_notify_socket() for the call if we didn't use up all the data on the
queue, so fix that also. |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: Fix memleak in l2tp_udp_encap_recv().
syzbot reported memleak of struct l2tp_session, l2tp_tunnel,
sock, etc. [0]
The cited commit moved down the validation of the protocol
version in l2tp_udp_encap_recv().
The new place requires an extra error handling to avoid the
memleak.
Let's call l2tp_session_put() there.
[0]:
BUG: memory leak
unreferenced object 0xffff88810a290200 (size 512):
comm "syz.0.17", pid 6086, jiffies 4294944299
hex dump (first 32 bytes):
7d eb 04 0c 00 00 00 00 01 00 00 00 00 00 00 00 }...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc babb6a4f):
kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline]
slab_post_alloc_hook mm/slub.c:4958 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
__do_kmalloc_node mm/slub.c:5656 [inline]
__kmalloc_noprof+0x3e0/0x660 mm/slub.c:5669
kmalloc_noprof include/linux/slab.h:961 [inline]
kzalloc_noprof include/linux/slab.h:1094 [inline]
l2tp_session_create+0x3a/0x3b0 net/l2tp/l2tp_core.c:1778
pppol2tp_connect+0x48b/0x920 net/l2tp/l2tp_ppp.c:755
__sys_connect_file+0x7a/0xb0 net/socket.c:2089
__sys_connect+0xde/0x110 net/socket.c:2108
__do_sys_connect net/socket.c:2114 [inline]
__se_sys_connect net/socket.c:2111 [inline]
__x64_sys_connect+0x1c/0x30 net/socket.c:2111
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xa4/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| A vulnerability in the web-based management interface of Cisco Prime Infrastructure could allow an authenticated, remote attacker to conduct a stored cross-site scripting (XSS) attack against users of the interface of an affected system.
This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by inserting malicious code into specific data fields in the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, an attacker must have valid administrative credentials. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix drm panic null pointer when driver not support atomic
When driver not support atomic, fb using plane->fb rather than
plane->state->fb.
(cherry picked from commit 2f2a72de673513247cd6fae14e53f6c40c5841ef) |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix a deadlock involving nfs_release_folio()
Wang Zhaolong reports a deadlock involving NFSv4.1 state recovery
waiting on kthreadd, which is attempting to reclaim memory by calling
nfs_release_folio(). The latter cannot make progress due to state
recovery being needed.
It seems that the only safe thing to do here is to kick off a writeback
of the folio, without waiting for completion, or else kicking off an
asynchronous commit. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: riic: Move suspend handling to NOIRQ phase
Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added
suspend support for the Renesas I2C driver and following this change
on RZ/G3E the following WARNING is seen on entering suspend ...
[ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds)
[ 134.285536] ------------[ cut here ]------------
[ 134.290298] i2c i2c-2: Transfer while suspended
[ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388
[ 134.365507] Tainted: [W]=WARN
[ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT)
[ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214
[ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214
[ 134.391717] sp : ffff800083f23860
[ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60
[ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001
[ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936
[ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006
[ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280
[ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09
[ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8
[ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000
[ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000
[ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80
[ 134.466851] Call trace:
[ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P)
[ 134.473715] i2c_smbus_xfer+0xbc/0x120
[ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84
[ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208]
[ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208]
[ 134.493226] __rtc_read_time+0x44/0x88
[ 134.497012] rtc_read_time+0x3c/0x68
[ 134.500622] rtc_suspend+0x9c/0x170
The warning is triggered because I2C transfers can still be attempted
while the controller is already suspended, due to inappropriate ordering
of the system sleep callbacks.
If the controller is autosuspended, there is no way to wake it up once
runtime PM disabled (in suspend_late()). During system resume, the I2C
controller will be available only after runtime PM is re-enabled
(in resume_early()). However, this may be too late for some devices.
Wake up the controller in the suspend() callback while runtime PM is
still enabled. The I2C controller will remain available until the
suspend_noirq() callback (pm_runtime_force_suspend()) is called. During
resume, the I2C controller can be restored by the resume_noirq() callback
(pm_runtime_force_resume()). Finally, the resume() callback re-enables
autosuspend. As a result, the I2C controller can remain available until
the system enters suspend_noirq() and from resume_noirq(). |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix devlink reload call trace
Commit 4da71a77fc3b ("ice: read internal temperature sensor") introduced
internal temperature sensor reading via HWMON. ice_hwmon_init() was added
to ice_init_feature() and ice_hwmon_exit() was added to ice_remove(). As a
result if devlink reload is used to reinit the device and then the driver
is removed, a call trace can occur.
BUG: unable to handle page fault for address: ffffffffc0fd4b5d
Call Trace:
string+0x48/0xe0
vsnprintf+0x1f9/0x650
sprintf+0x62/0x80
name_show+0x1f/0x30
dev_attr_show+0x19/0x60
The call trace repeats approximately every 10 minutes when system
monitoring tools (e.g., sadc) attempt to read the orphaned hwmon sysfs
attributes that reference freed module memory.
The sequence is:
1. Driver load, ice_hwmon_init() gets called from ice_init_feature()
2. Devlink reload down, flow does not call ice_remove()
3. Devlink reload up, ice_hwmon_init() gets called from
ice_init_feature() resulting in a second instance
4. Driver unload, ice_hwmon_exit() called from ice_remove() leaving the
first hwmon instance orphaned with dangling pointer
Fix this by moving ice_hwmon_exit() from ice_remove() to
ice_deinit_features() to ensure proper cleanup symmetry with
ice_hwmon_init(). |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: Coalesce only linear skb
vsock/virtio common tries to coalesce buffers in rx queue: if a linear skb
(with a spare tail room) is followed by a small skb (length limited by
GOOD_COPY_LEN = 128), an attempt is made to join them.
Since the introduction of MSG_ZEROCOPY support, assumption that a small skb
will always be linear is incorrect. In the zerocopy case, data is lost and
the linear skb is appended with uninitialized kernel memory.
Of all 3 supported virtio-based transports, only loopback-transport is
affected. G2H virtio-transport rx queue operates on explicitly linear skbs;
see virtio_vsock_alloc_linear_skb() in virtio_vsock_rx_fill(). H2G
vhost-transport may allocate non-linear skbs, but only for sizes that are
not considered for coalescence; see PAGE_ALLOC_COSTLY_ORDER in
virtio_vsock_alloc_skb().
Ensure only linear skbs are coalesced. Note that skb_tailroom(last_skb) > 0
guarantees last_skb is linear. |
| RIOT is an open-source microcontroller operating system, designed to match the requirements of Internet of Things (IoT) devices and other embedded devices. In version 2025.10 and prior, multiple out-of-bounds read allow any unauthenticated user, with ability to send or manipulate input packets, to read adjacent memory locations, or crash a vulnerable device running the 6LoWPAN stack. The received packet is cast into a sixlowpan_sfr_rfrag_t struct and dereferenced without validating the packet is large enough to contain the struct object. At time of publication, no known patch exists. |
| Magento-lts is a long-term support alternative to Magento Community Edition (CE). Prior to version 20.16.1, the admin url can be discovered without prior knowledge of it's location by exploiting the X-Original-Url header on some configurations. This issue has been patched in version 20.16.1. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kernel panic in GET_INSTANCE_ID macro
The GET_INSTANCE_ID macro that caused a kernel panic when accessing sysfs
attributes:
1. Off-by-one error: The loop condition used '<=' instead of '<',
causing access beyond array bounds. Since array indices are 0-based
and go from 0 to instances_count-1, the loop should use '<'.
2. Missing NULL check: The code dereferenced attr_name_kobj->name
without checking if attr_name_kobj was NULL, causing a null pointer
dereference in min_length_show() and other attribute show functions.
The panic occurred when fwupd tried to read BIOS configuration attributes:
Oops: general protection fault [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:min_length_show+0xcf/0x1d0 [hp_bioscfg]
Add a NULL check for attr_name_kobj before dereferencing and corrects
the loop boundary to match the pattern used elsewhere in the driver. |
| Navidrome is an open source web-based music collection server and streamer. Prior to version 0.60.0, authenticated users can crash the Navidrome server by supplying an excessively large size parameter to /rest/getCoverArt or to a shared-image URL (/share/img/<token>). When processing such requests, the server attempts to create an extremely large resized image, causing uncontrolled memory growth. This triggers the Linux OOM killer, terminates the Navidrome process, and results in a full service outage. If the system has sufficient memory and survives the allocation, Navidrome then writes these extremely large resized images into its cache directory, allowing an attacker to rapidly exhaust server disk space as well. This issue has been patched in version 0.60.0. |
| BartVPN 1.2.2 contains an unquoted service path vulnerability in the BartVPNService that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path by placing malicious executables in specific file system locations to hijack the service's execution context. |