| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Out-of-bounds write in libimagecodec.quram.so prior to SMR Sep-2025 Release 1 allows remote attackers to execute arbitrary code. |
| The iconv() function in the GNU C Library versions 2.39 and older may overflow the output buffer passed to it by up to 4 bytes when converting strings to the ISO-2022-CN-EXT character set, which may be used to crash an application or overwrite a neighbouring variable. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/code-patching: Disable KASAN report during patching via temporary mm
Erhard reports the following KASAN hit on Talos II (power9) with kernel 6.13:
[ 12.028126] ==================================================================
[ 12.028198] BUG: KASAN: user-memory-access in copy_to_kernel_nofault+0x8c/0x1a0
[ 12.028260] Write of size 8 at addr 0000187e458f2000 by task systemd/1
[ 12.028346] CPU: 87 UID: 0 PID: 1 Comm: systemd Tainted: G T 6.13.0-P9-dirty #3
[ 12.028408] Tainted: [T]=RANDSTRUCT
[ 12.028446] Hardware name: T2P9D01 REV 1.01 POWER9 0x4e1202 opal:skiboot-bc106a0 PowerNV
[ 12.028500] Call Trace:
[ 12.028536] [c000000008dbf3b0] [c000000001656a48] dump_stack_lvl+0xbc/0x110 (unreliable)
[ 12.028609] [c000000008dbf3f0] [c0000000006e2fc8] print_report+0x6b0/0x708
[ 12.028666] [c000000008dbf4e0] [c0000000006e2454] kasan_report+0x164/0x300
[ 12.028725] [c000000008dbf600] [c0000000006e54d4] kasan_check_range+0x314/0x370
[ 12.028784] [c000000008dbf640] [c0000000006e6310] __kasan_check_write+0x20/0x40
[ 12.028842] [c000000008dbf660] [c000000000578e8c] copy_to_kernel_nofault+0x8c/0x1a0
[ 12.028902] [c000000008dbf6a0] [c0000000000acfe4] __patch_instructions+0x194/0x210
[ 12.028965] [c000000008dbf6e0] [c0000000000ade80] patch_instructions+0x150/0x590
[ 12.029026] [c000000008dbf7c0] [c0000000001159bc] bpf_arch_text_copy+0x6c/0xe0
[ 12.029085] [c000000008dbf800] [c000000000424250] bpf_jit_binary_pack_finalize+0x40/0xc0
[ 12.029147] [c000000008dbf830] [c000000000115dec] bpf_int_jit_compile+0x3bc/0x930
[ 12.029206] [c000000008dbf990] [c000000000423720] bpf_prog_select_runtime+0x1f0/0x280
[ 12.029266] [c000000008dbfa00] [c000000000434b18] bpf_prog_load+0xbb8/0x1370
[ 12.029324] [c000000008dbfb70] [c000000000436ebc] __sys_bpf+0x5ac/0x2e00
[ 12.029379] [c000000008dbfd00] [c00000000043a228] sys_bpf+0x28/0x40
[ 12.029435] [c000000008dbfd20] [c000000000038eb4] system_call_exception+0x334/0x610
[ 12.029497] [c000000008dbfe50] [c00000000000c270] system_call_vectored_common+0xf0/0x280
[ 12.029561] --- interrupt: 3000 at 0x3fff82f5cfa8
[ 12.029608] NIP: 00003fff82f5cfa8 LR: 00003fff82f5cfa8 CTR: 0000000000000000
[ 12.029660] REGS: c000000008dbfe80 TRAP: 3000 Tainted: G T (6.13.0-P9-dirty)
[ 12.029735] MSR: 900000000280f032 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI> CR: 42004848 XER: 00000000
[ 12.029855] IRQMASK: 0
GPR00: 0000000000000169 00003fffdcf789a0 00003fff83067100 0000000000000005
GPR04: 00003fffdcf78a98 0000000000000090 0000000000000000 0000000000000008
GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR12: 0000000000000000 00003fff836ff7e0 c000000000010678 0000000000000000
GPR16: 0000000000000000 0000000000000000 00003fffdcf78f28 00003fffdcf78f90
GPR20: 0000000000000000 0000000000000000 0000000000000000 00003fffdcf78f80
GPR24: 00003fffdcf78f70 00003fffdcf78d10 00003fff835c7239 00003fffdcf78bd8
GPR28: 00003fffdcf78a98 0000000000000000 0000000000000000 000000011f547580
[ 12.030316] NIP [00003fff82f5cfa8] 0x3fff82f5cfa8
[ 12.030361] LR [00003fff82f5cfa8] 0x3fff82f5cfa8
[ 12.030405] --- interrupt: 3000
[ 12.030444] ==================================================================
Commit c28c15b6d28a ("powerpc/code-patching: Use temporary mm for
Radix MMU") is inspired from x86 but unlike x86 is doesn't disable
KASAN reports during patching. This wasn't a problem at the begining
because __patch_mem() is not instrumented.
Commit 465cabc97b42 ("powerpc/code-patching: introduce
patch_instructions()") use copy_to_kernel_nofault() to copy several
instructions at once. But when using temporary mm the destination is
not regular kernel memory but a kind of kernel-like memory located
in user address space.
---truncated--- |
| Windows MSHTML Platform Remote Code Execution Vulnerability |
| Scripting Engine Memory Corruption Vulnerability |
| A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Internet Explorer, aka "Scripting Engine Memory Corruption Vulnerability." This affects Internet Explorer 9, Internet Explorer 11, Internet Explorer 10. This CVE ID is unique from CVE-2018-8643. |
| A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Internet Explorer, aka 'Scripting Engine Memory Corruption Vulnerability'. This CVE ID is unique from CVE-2019-1221. |
| <p>A remote code execution vulnerability exists in the way that Microsoft browsers access objects in memory. The vulnerability could corrupt memory in a way that could allow an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, the attacker could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.</p>
<p>An attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft browsers, and then convince a user to view the website. The attacker could also take advantage of compromised websites, or websites that accept or host user-provided content or advertisements, by adding specially crafted content that could exploit the vulnerability. In all cases, however, an attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically via an enticement in email or instant message, or by getting them to open an email attachment.</p>
<p>The security update addresses the vulnerability by modifying how Microsoft browsers handle objects in memory.</p>
|
| A remote code execution vulnerability exists in Microsoft Windows when the Windows Adobe Type Manager Library improperly handles a specially-crafted multi-master font - Adobe Type 1 PostScript format.For all systems except Windows 10, an attacker who successfully exploited the vulnerability could execute code remotely, aka 'Adobe Font Manager Library Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2020-1020. |
| A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Internet Explorer, aka 'Scripting Engine Memory Corruption Vulnerability'. This CVE ID is unique from CVE-2020-0970. |
| An elevation of privilege vulnerability exists when the Windows kernel fails to properly handle objects in memory, aka 'Windows Kernel Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2020-1237, CVE-2020-1246, CVE-2020-1262, CVE-2020-1264, CVE-2020-1266, CVE-2020-1269, CVE-2020-1273, CVE-2020-1274, CVE-2020-1275, CVE-2020-1276, CVE-2020-1307, CVE-2020-1316. |
| A vulnerability has been identified in Solid Edge SE2024 (All versions < V224.0 Update 12), Solid Edge SE2025 (All versions < V225.0 Update 3). The affected application contains an out of bounds write past the end of an allocated buffer while parsing X_T data or a specially crafted file in X_T format.
This could allow an attacker to execute code in the context of the current process. |
| A remote code execution vulnerability exists in Microsoft Windows when the Windows Adobe Type Manager Library improperly handles a specially-crafted multi-master font - Adobe Type 1 PostScript format.For all systems except Windows 10, an attacker who successfully exploited the vulnerability could execute code remotely, aka 'Adobe Font Manager Library Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2020-0938. |
| An elevation of privilege vulnerability exists in the way that the Windows Kernel handles objects in memory, aka 'Windows Kernel Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2020-0913, CVE-2020-1000, CVE-2020-1003. |
| An elevation of privilege vulnerability exists in Windows when the Windows kernel-mode driver fails to properly handle objects in memory, aka 'Win32k Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2020-1143. |
| A remote code execution vulnerability exists in the way that the scripting engine handles objects in memory in Internet Explorer. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability through Internet Explorer and then convince a user to view the website. An attacker could also embed an ActiveX control marked "safe for initialization" in an application or Microsoft Office document that hosts the IE rendering engine. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the scripting engine handles objects in memory.
|
| In the Linux kernel, the following vulnerability has been resolved:
block: ublk: extending queue_size to fix overflow
When validating drafted SPDK ublk target, in a case that
assigning large queue depth to multiqueue ublk device,
ublk target would run into a weird incorrect state. During
rounds of review and debug, An overflow bug was found
in ublk driver.
In ublk_cmd.h, UBLK_MAX_QUEUE_DEPTH is 4096 which means
each ublk queue depth can be set as large as 4096. But
when setting qd for a ublk device,
sizeof(struct ublk_queue) + depth * sizeof(struct ublk_io)
will be larger than 65535 if qd is larger than 2728.
Then queue_size is overflowed, and ublk_get_queue()
references a wrong pointer position. The wrong content of
ublk_queue elements will lead to out-of-bounds memory
access.
Extend queue_size in ublk_device as "unsigned int". |
| Tenda AC6 V2.0 15.03.06.50 was discovered to contain a stack overflow in the ssid parameter in the fast_setting_wifi_set function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input. |
| Windows DWM Core Library Elevation of Privilege Vulnerability |
| Equation Editor in Microsoft Office 2007, Microsoft Office 2010, Microsoft Office 2013, and Microsoft Office 2016 allows a remote code execution vulnerability due to the way objects are handled in memory, aka "Microsoft Office Memory Corruption Vulnerability". |