| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: nsh: Use correct mac_offset to unwind gso skb in nsh_gso_segment()
As the call trace shows, skb_panic was caused by wrong skb->mac_header
in nsh_gso_segment():
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 PID: 2737 Comm: syz Not tainted 6.3.0-next-20230505 #1
RIP: 0010:skb_panic+0xda/0xe0
call Trace:
skb_push+0x91/0xa0
nsh_gso_segment+0x4f3/0x570
skb_mac_gso_segment+0x19e/0x270
__skb_gso_segment+0x1e8/0x3c0
validate_xmit_skb+0x452/0x890
validate_xmit_skb_list+0x99/0xd0
sch_direct_xmit+0x294/0x7c0
__dev_queue_xmit+0x16f0/0x1d70
packet_xmit+0x185/0x210
packet_snd+0xc15/0x1170
packet_sendmsg+0x7b/0xa0
sock_sendmsg+0x14f/0x160
The root cause is:
nsh_gso_segment() use skb->network_header - nhoff to reset mac_header
in skb_gso_error_unwind() if inner-layer protocol gso fails.
However, skb->network_header may be reset by inner-layer protocol
gso function e.g. mpls_gso_segment. skb->mac_header reset by the
inaccurate network_header will be larger than skb headroom.
nsh_gso_segment
nhoff = skb->network_header - skb->mac_header;
__skb_pull(skb,nsh_len)
skb_mac_gso_segment
mpls_gso_segment
skb_reset_network_header(skb);//skb->network_header+=nsh_len
return -EINVAL;
skb_gso_error_unwind
skb_push(skb, nsh_len);
skb->mac_header = skb->network_header - nhoff;
// skb->mac_header > skb->headroom, cause skb_push panic
Use correct mac_offset to restore mac_header and get rid of nhoff. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-generic: prohibit potential out-of-bounds access
The fbdev test of IGT may write after EOF, which lead to out-of-bound
access for drm drivers with fbdev-generic. For example, run fbdev test
on a x86+ast2400 platform, with 1680x1050 resolution, will cause the
linux kernel hang with the following call trace:
Oops: 0000 [#1] PREEMPT SMP PTI
[IGT] fbdev: starting subtest eof
Workqueue: events drm_fb_helper_damage_work [drm_kms_helper]
[IGT] fbdev: starting subtest nullptr
RIP: 0010:memcpy_erms+0xa/0x20
RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246
RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0
RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000
RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0
R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80
R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30
FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0
Call Trace:
<TASK>
? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper]
drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper]
process_one_work+0x21f/0x430
worker_thread+0x4e/0x3c0
? __pfx_worker_thread+0x10/0x10
kthread+0xf4/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
CR2: ffffa17d40e0b000
---[ end trace 0000000000000000 ]---
The is because damage rectangles computed by
drm_fb_helper_memory_range_to_clip() function is not guaranteed to be
bound in the screen's active display area. Possible reasons are:
1) Buffers are allocated in the granularity of page size, for mmap system
call support. The shadow screen buffer consumed by fbdev emulation may
also choosed be page size aligned.
2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip()
will introduce off-by-one error.
For example, on a 16KB page size system, in order to store a 1920x1080
XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size
1920*1080*4 can not be divided exactly by 16KB.
1920 * 1080 * 4 = 8294400 bytes
506 * 16 * 1024 = 8290304 bytes
507 * 16 * 1024 = 8306688 bytes
line_length = 1920*4 = 7680 bytes
507 * 16 * 1024 / 7680 = 1081.6
off / line_length = 507 * 16 * 1024 / 7680 = 1081
DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082
memcpy_toio() typically issue the copy line by line, when copy the last
line, out-of-bound access will be happen. Because:
1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688
Note that userspace may still write to the invisiable area if a larger
buffer than width x stride is exposed. But it is not a big issue as
long as there still have memory resolve the access if not drafting so
far.
- Also limit the y1 (Daniel)
- keep fix patch it to minimal (Daniel)
- screen_size is page size aligned because of it need mmap (Thomas)
- Adding fixes tag (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dcssblk: fix kernel crash with list_add corruption
Commit fb08a1908cb1 ("dax: simplify the dax_device <-> gendisk
association") introduced new logic for gendisk association, requiring
drivers to explicitly call dax_add_host() and dax_remove_host().
For dcssblk driver, some dax_remove_host() calls were missing, e.g. in
device remove path. The commit also broke error handling for out_dax case
in device add path, resulting in an extra put_device() w/o the previous
get_device() in that case.
This lead to stale xarray entries after device add / remove cycles. In the
case when a previously used struct gendisk pointer (xarray index) would be
used again, because blk_alloc_disk() happened to return such a pointer, the
xa_insert() in dax_add_host() would fail and go to out_dax, doing the extra
put_device() in the error path. In combination with an already flawed error
handling in dcssblk (device_register() cleanup), which needs to be
addressed in a separate patch, this resulted in a missing device_del() /
klist_del(), and eventually in the kernel crash with list_add corruption on
a subsequent device_add() / klist_add().
Fix this by adding the missing dax_remove_host() calls, and also move the
put_device() in the error path to restore the previous logic. |
| In the Linux kernel, the following vulnerability has been resolved:
inotify: Avoid reporting event with invalid wd
When inotify_freeing_mark() races with inotify_handle_inode_event() it
can happen that inotify_handle_inode_event() sees that i_mark->wd got
already reset to -1 and reports this value to userspace which can
confuse the inotify listener. Avoid the problem by validating that wd is
sensible (and pretend the mark got removed before the event got
generated otherwise). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix incorrect splitting in btrfs_drop_extent_map_range
In production we were seeing a variety of WARN_ON()'s in the extent_map
code, specifically in btrfs_drop_extent_map_range() when we have to call
add_extent_mapping() for our second split.
Consider the following extent map layout
PINNED
[0 16K) [32K, 48K)
and then we call btrfs_drop_extent_map_range for [0, 36K), with
skip_pinned == true. The initial loop will have
start = 0
end = 36K
len = 36K
we will find the [0, 16k) extent, but since we are pinned we will skip
it, which has this code
start = em_end;
if (end != (u64)-1)
len = start + len - em_end;
em_end here is 16K, so now the values are
start = 16K
len = 16K + 36K - 16K = 36K
len should instead be 20K. This is a problem when we find the next
extent at [32K, 48K), we need to split this extent to leave [36K, 48k),
however the code for the split looks like this
split->start = start + len;
split->len = em_end - (start + len);
In this case we have
em_end = 48K
split->start = 16K + 36K // this should be 16K + 20K
split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K
and now we have an invalid extent_map in the tree that potentially
overlaps other entries in the extent map. Even in the non-overlapping
case we will have split->start set improperly, which will cause problems
with any block related calculations.
We don't actually need len in this loop, we can simply use end as our
end point, and only adjust start up when we find a pinned extent we need
to skip.
Adjust the logic to do this, which keeps us from inserting an invalid
extent map.
We only skip_pinned in the relocation case, so this is relatively rare,
except in the case where you are running relocation a lot, which can
happen with auto relocation on. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add check for cstate
As kzalloc may fail and return NULL pointer,
it should be better to check cstate
in order to avoid the NULL pointer dereference
in __drm_atomic_helper_crtc_reset.
Patchwork: https://patchwork.freedesktop.org/patch/514163/ |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix memleak for 'conf->bio_split'
In the error path of raid10_run(), 'conf' need be freed, however,
'conf->bio_split' is missed and memory will be leaked.
Since there are 3 places to free 'conf', factor out a helper to fix the
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rt2x00: Fix memory leak when handling surveys
When removing a rt2x00 device, its associated channel surveys
are not freed, causing a memory leak observable with kmemleak:
unreferenced object 0xffff9620f0881a00 (size 512):
comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s)
hex dump (first 32 bytes):
70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD..............
00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................
backtrace:
[<ffffffffb0ed858b>] __kmalloc+0x4b/0x130
[<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib]
[<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb]
[<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib]
[<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb]
[<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore]
[<ffffffffb13be2d5>] really_probe+0x1a5/0x410
[<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180
[<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90
[<ffffffffb13be972>] __driver_attach+0xd2/0x1c0
[<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0
[<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210
[<ffffffffb13bfc6c>] driver_register+0x5c/0x120
[<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore]
[<ffffffffb0c011c4>] do_one_initcall+0x44/0x220
[<ffffffffb0d6134c>] do_init_module+0x4c/0x220
Fix this by freeing the channel surveys on device removal.
Tested with a RT3070 based USB wireless adapter. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: safexcel - Cleanup ring IRQ workqueues on load failure
A failure loading the safexcel driver results in the following warning
on boot, because the IRQ affinity has not been correctly cleaned up.
Ensure we clean up the affinity and workqueues on a failure to load the
driver.
crypto-safexcel: probe of f2800000.crypto failed with error -2
------------[ cut here ]------------
WARNING: CPU: 1 PID: 232 at kernel/irq/manage.c:1913 free_irq+0x300/0x340
Modules linked in: hwmon mdio_i2c crypto_safexcel(+) md5 sha256_generic libsha256 authenc libdes omap_rng rng_core nft_masq nft_nat nft_chain_nat nf_nat nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables libcrc32c nfnetlink fuse autofs4
CPU: 1 PID: 232 Comm: systemd-udevd Tainted: G W 6.1.6-00002-g9d4898824677 #3
Hardware name: MikroTik RB5009 (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : free_irq+0x300/0x340
lr : free_irq+0x2e0/0x340
sp : ffff800008fa3890
x29: ffff800008fa3890 x28: 0000000000000000 x27: 0000000000000000
x26: ffff8000008e6dc0 x25: ffff000009034cac x24: ffff000009034d50
x23: 0000000000000000 x22: 000000000000004a x21: ffff0000093e0d80
x20: ffff000009034c00 x19: ffff00000615fc00 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 000075f5c1584c5e
x14: 0000000000000017 x13: 0000000000000000 x12: 0000000000000040
x11: ffff000000579b60 x10: ffff000000579b62 x9 : ffff800008bbe370
x8 : ffff000000579dd0 x7 : 0000000000000000 x6 : ffff000000579e18
x5 : ffff000000579da8 x4 : ffff800008ca0000 x3 : ffff800008ca0188
x2 : 0000000013033204 x1 : ffff000009034c00 x0 : ffff8000087eadf0
Call trace:
free_irq+0x300/0x340
devm_irq_release+0x14/0x20
devres_release_all+0xa0/0x100
device_unbind_cleanup+0x14/0x60
really_probe+0x198/0x2d4
__driver_probe_device+0x74/0xdc
driver_probe_device+0x3c/0x110
__driver_attach+0x8c/0x190
bus_for_each_dev+0x6c/0xc0
driver_attach+0x20/0x30
bus_add_driver+0x148/0x1fc
driver_register+0x74/0x120
__platform_driver_register+0x24/0x30
safexcel_init+0x48/0x1000 [crypto_safexcel]
do_one_initcall+0x4c/0x1b0
do_init_module+0x44/0x1cc
load_module+0x1724/0x1be4
__do_sys_finit_module+0xbc/0x110
__arm64_sys_finit_module+0x1c/0x24
invoke_syscall+0x44/0x110
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x20/0x80
el0_svc+0x14/0x4c
el0t_64_sync_handler+0xb0/0xb4
el0t_64_sync+0x148/0x14c
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
fs: drop peer group ids under namespace lock
When cleaning up peer group ids in the failure path we need to make sure
to hold on to the namespace lock. Otherwise another thread might just
turn the mount from a shared into a non-shared mount concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation for lmac type
Upon physical link change, firmware reports to the kernel about the
change along with the details like speed, lmac_type_id, etc.
Kernel derives lmac_type based on lmac_type_id received from firmware.
In a few scenarios, firmware returns an invalid lmac_type_id, which
is resulting in below kernel panic. This patch adds the missing
validation of the lmac_type_id field.
Internal error: Oops: 96000005 [#1] PREEMPT SMP
[ 35.321595] Modules linked in:
[ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted
5.4.210-g2e3169d8e1bc-dirty #17
[ 35.337014] Hardware name: Marvell CN103XX board (DT)
[ 35.344297] Workqueue: events work_for_cpu_fn
[ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO)
[ 35.360267] pc : strncpy+0x10/0x30
[ 35.366595] lr : cgx_link_change_handler+0x90/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling
Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed
a build warning by turning a comment into a WARN_ON(), but it turns out
that syzbot then complains because it can trigger said warning with a
corrupted hfs image.
The warning actually does warn about a bad situation, but we are much
better off just handling it as the error it is. So rather than warn
about us doing bad things, stop doing the bad things and return -EIO.
While at it, also fix a memory leak that was introduced by an earlier
fix for a similar syzbot warning situation, and add a check for one case
that historically wasn't handled at all (ie neither comment nor
subsequent WARN_ON). |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: stop parsing non-compact HEAD index if clusterofs is invalid
Syzbot generated a crafted image [1] with a non-compact HEAD index of
clusterofs 33024 while valid numbers should be 0 ~ lclustersize-1,
which causes the following unexpected behavior as below:
BUG: unable to handle page fault for address: fffff52101a3fff9
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 23ffed067 P4D 23ffed067 PUD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4398 Comm: kworker/u5:1 Not tainted 6.3.0-rc6-syzkaller-g09a9639e56c0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
Workqueue: erofs_worker z_erofs_decompressqueue_work
RIP: 0010:z_erofs_decompress_queue+0xb7e/0x2b40
...
Call Trace:
<TASK>
z_erofs_decompressqueue_work+0x99/0xe0
process_one_work+0x8f6/0x1170
worker_thread+0xa63/0x1210
kthread+0x270/0x300
ret_from_fork+0x1f/0x30
Note that normal images or images using compact indexes are not
impacted. Let's fix this now.
[1] https://lore.kernel.org/r/000000000000ec75b005ee97fbaa@google.com |
| In the Linux kernel, the following vulnerability has been resolved:
nfp: clean mc addresses in application firmware when closing port
When moving devices from one namespace to another, mc addresses are
cleaned in software while not removed from application firmware. Thus
the mc addresses are remained and will cause resource leak.
Now use `__dev_mc_unsync` to clean mc addresses when closing port. |
| V-SOL GPON/EPON OLT Platform v2.03 contains a privilege escalation vulnerability that allows normal users to gain administrative access by manipulating the user role parameter. Attackers can send a crafted HTTP POST request to the user management endpoint with 'user_role_mod' set to integer value '1' to elevate their privileges. |
| C-Kermit (aka ckermit) through 10.0 Beta.12 (aka 416-beta12) before 244644d allows a remote Kermit system to overwrite files on the local system, or retrieve arbitrary files from the local system. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix race condition when unbinding BOs
Fix 'Memory manager not clean during takedown' warning that occurs
when ivpu_gem_bo_free() removes the BO from the BOs list before it
gets unmapped. Then file_priv_unbind() triggers a warning in
drm_mm_takedown() during context teardown.
Protect the unmapping sequence with bo_list_lock to ensure the BO is
always fully unmapped when removed from the list. This ensures the BO
is either fully unmapped at context teardown time or present on the
list and unmapped by file_priv_unbind(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF race between device unplug and FW event processing
The function panthor_fw_unplug() will free the FW memory sections.
The problem is that there could still be pending FW events which are yet
not handled at this point. process_fw_events_work() can in this case try
to access said freed memory.
Simply call disable_work_sync() to both drain and prevent future
invocation of process_fw_events_work(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF on kernel BO VA nodes
If the MMU is down, panthor_vm_unmap_range() might return an error.
We expect the page table to be updated still, and if the MMU is blocked,
the rest of the GPU should be blocked too, so no risk of accessing
physical memory returned to the system (which the current code doesn't
cover for anyway).
Proceed with the rest of the cleanup instead of bailing out and leaving
the va_node inserted in the drm_mm, which leads to UAF when other
adjacent nodes are removed from the drm_mm tree. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Clear cmds after chip reset
Commit aefed3e5548f ("scsi: qla2xxx: target: Fix offline port handling
and host reset handling") caused two problems:
1. Commands sent to FW, after chip reset got stuck and never freed as FW
is not going to respond to them anymore.
2. BUG_ON(cmd->sg_mapped) in qlt_free_cmd(). Commit 26f9ce53817a
("scsi: qla2xxx: Fix missed DMA unmap for aborted commands")
attempted to fix this, but introduced another bug under different
circumstances when two different CPUs were racing to call
qlt_unmap_sg() at the same time: BUG_ON(!valid_dma_direction(dir)) in
dma_unmap_sg_attrs().
So revert "scsi: qla2xxx: Fix missed DMA unmap for aborted commands" and
partially revert "scsi: qla2xxx: target: Fix offline port handling and
host reset handling" at __qla2x00_abort_all_cmds. |