| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: platform: mtk-mdp3: Add missing check and free for ida_alloc
Add the check for the return value of the ida_alloc in order to avoid
NULL pointer dereference.
Moreover, free allocated "ctx->id" if mdp_m2m_open fails later in order
to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Move representor neigh cleanup to profile cleanup_tx
For IP tunnel encapsulation in ECMP (Equal-Cost Multipath) mode, as
the flow is duplicated to the peer eswitch, the related neighbour
information on the peer uplink representor is created as well.
In the cited commit, eswitch devcom unpair is moved to uplink unload
API, specifically the profile->cleanup_tx. If there is a encap rule
offloaded in ECMP mode, when one eswitch does unpair (because of
unloading the driver, for instance), and the peer rule from the peer
eswitch is going to be deleted, the use-after-free error is triggered
while accessing neigh info, as it is already cleaned up in uplink's
profile->disable, which is before its profile->cleanup_tx.
To fix this issue, move the neigh cleanup to profile's cleanup_tx
callback, and after mlx5e_cleanup_uplink_rep_tx is called. The neigh
init is moved to init_tx for symmeter.
[ 2453.376299] BUG: KASAN: slab-use-after-free in mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.379125] Read of size 4 at addr ffff888127af9008 by task modprobe/2496
[ 2453.381542] CPU: 7 PID: 2496 Comm: modprobe Tainted: G B 6.4.0-rc7+ #15
[ 2453.383386] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 2453.384335] Call Trace:
[ 2453.384625] <TASK>
[ 2453.384891] dump_stack_lvl+0x33/0x50
[ 2453.385285] print_report+0xc2/0x610
[ 2453.385667] ? __virt_addr_valid+0xb1/0x130
[ 2453.386091] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.386757] kasan_report+0xae/0xe0
[ 2453.387123] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.387798] mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.388465] mlx5e_rep_encap_entry_detach+0xa6/0xe0 [mlx5_core]
[ 2453.389111] mlx5e_encap_dealloc+0xa7/0x100 [mlx5_core]
[ 2453.389706] mlx5e_tc_tun_encap_dests_unset+0x61/0xb0 [mlx5_core]
[ 2453.390361] mlx5_free_flow_attr_actions+0x11e/0x340 [mlx5_core]
[ 2453.391015] ? complete_all+0x43/0xd0
[ 2453.391398] ? free_flow_post_acts+0x38/0x120 [mlx5_core]
[ 2453.392004] mlx5e_tc_del_fdb_flow+0x4ae/0x690 [mlx5_core]
[ 2453.392618] mlx5e_tc_del_fdb_peers_flow+0x308/0x370 [mlx5_core]
[ 2453.393276] mlx5e_tc_clean_fdb_peer_flows+0xf5/0x140 [mlx5_core]
[ 2453.393925] mlx5_esw_offloads_unpair+0x86/0x540 [mlx5_core]
[ 2453.394546] ? mlx5_esw_offloads_set_ns_peer.isra.0+0x180/0x180 [mlx5_core]
[ 2453.395268] ? down_write+0xaa/0x100
[ 2453.395652] mlx5_esw_offloads_devcom_event+0x203/0x530 [mlx5_core]
[ 2453.396317] mlx5_devcom_send_event+0xbb/0x190 [mlx5_core]
[ 2453.396917] mlx5_esw_offloads_devcom_cleanup+0xb0/0xd0 [mlx5_core]
[ 2453.397582] mlx5e_tc_esw_cleanup+0x42/0x120 [mlx5_core]
[ 2453.398182] mlx5e_rep_tc_cleanup+0x15/0x30 [mlx5_core]
[ 2453.398768] mlx5e_cleanup_rep_tx+0x6c/0x80 [mlx5_core]
[ 2453.399367] mlx5e_detach_netdev+0xee/0x120 [mlx5_core]
[ 2453.399957] mlx5e_netdev_change_profile+0x84/0x170 [mlx5_core]
[ 2453.400598] mlx5e_vport_rep_unload+0xe0/0xf0 [mlx5_core]
[ 2453.403781] mlx5_eswitch_unregister_vport_reps+0x15e/0x190 [mlx5_core]
[ 2453.404479] ? mlx5_eswitch_register_vport_reps+0x200/0x200 [mlx5_core]
[ 2453.405170] ? up_write+0x39/0x60
[ 2453.405529] ? kernfs_remove_by_name_ns+0xb7/0xe0
[ 2453.405985] auxiliary_bus_remove+0x2e/0x40
[ 2453.406405] device_release_driver_internal+0x243/0x2d0
[ 2453.406900] ? kobject_put+0x42/0x2d0
[ 2453.407284] bus_remove_device+0x128/0x1d0
[ 2453.407687] device_del+0x240/0x550
[ 2453.408053] ? waiting_for_supplier_show+0xe0/0xe0
[ 2453.408511] ? kobject_put+0xfa/0x2d0
[ 2453.408889] ? __kmem_cache_free+0x14d/0x280
[ 2453.409310] mlx5_rescan_drivers_locked.part.0+0xcd/0x2b0 [mlx5_core]
[ 2453.409973] mlx5_unregister_device+0x40/0x50 [mlx5_core]
[ 2453.410561] mlx5_uninit_one+0x3d/0x110 [mlx5_core]
[ 2453.411111] remove_one+0x89/0x130 [mlx5_core]
[ 24
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses
When using the felix driver (the only one which supports UC filtering
and MC filtering) as a DSA master for a random other DSA switch, one can
see the following stack trace when the downstream switch ports join a
VLAN-aware bridge:
=============================
WARNING: suspicious RCU usage
-----------------------------
net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage!
stack backtrace:
Workqueue: dsa_ordered dsa_slave_switchdev_event_work
Call trace:
lockdep_rcu_suspicious+0x170/0x210
vlan_for_each+0x8c/0x188
dsa_slave_sync_uc+0x128/0x178
__hw_addr_sync_dev+0x138/0x158
dsa_slave_set_rx_mode+0x58/0x70
__dev_set_rx_mode+0x88/0xa8
dev_uc_add+0x74/0xa0
dsa_port_bridge_host_fdb_add+0xec/0x180
dsa_slave_switchdev_event_work+0x7c/0x1c8
process_one_work+0x290/0x568
What it's saying is that vlan_for_each() expects rtnl_lock() context and
it's not getting it, when it's called from the DSA master's ndo_set_rx_mode().
The caller of that - dsa_slave_set_rx_mode() - is the slave DSA
interface's dsa_port_bridge_host_fdb_add() which comes from the deferred
dsa_slave_switchdev_event_work().
We went to great lengths to avoid the rtnl_lock() context in that call
path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from
dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not
an option due to the possibility of deadlocking when calling
dsa_flush_workqueue() from the call paths that do hold rtnl_lock() -
basically all of them.
So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(),
the state of the 8021q driver on this device is really not protected
from concurrent access by anything.
Looking at net/8021q/, I don't think that vlan_info->vid_list was
particularly designed with RCU traversal in mind, so introducing an RCU
read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so
easy, and it also wouldn't be exactly what we need anyway.
In general I believe that the solution isn't in net/8021q/ anyway;
vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock()
to be held per se - since it's not a netdev state change that we're
blocking, but rather, just concurrent additions/removals to a VLAN list.
We don't even need sleepable context - the callback of vlan_for_each()
just schedules deferred work.
The proposed escape is to remove the dependency on vlan_for_each() and
to open-code a non-sleepable, rtnl-free alternative to that, based on
copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and
.ndo_vlan_rx_kill_vid(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by moving j1939_sk_errqueue()
This commit addresses a deadlock situation that can occur in certain
scenarios, such as when running data TP/ETP transfer and subscribing to
the error queue while receiving a net down event. The deadlock involves
locks in the following order:
3
j1939_session_list_lock -> active_session_list_lock
j1939_session_activate
...
j1939_sk_queue_activate_next -> sk_session_queue_lock
...
j1939_xtp_rx_eoma_one
2
j1939_sk_queue_drop_all -> sk_session_queue_lock
...
j1939_sk_netdev_event_netdown -> j1939_socks_lock
j1939_netdev_notify
1
j1939_sk_errqueue -> j1939_socks_lock
__j1939_session_cancel -> active_session_list_lock
j1939_tp_rxtimer
CPU0 CPU1
---- ----
lock(&priv->active_session_list_lock);
lock(&jsk->sk_session_queue_lock);
lock(&priv->active_session_list_lock);
lock(&priv->j1939_socks_lock);
The solution implemented in this commit is to move the
j1939_sk_errqueue() call out of the active_session_list_lock context,
thus preventing the deadlock situation. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: turn quotas off if mount failed after enabling quotas
Yi found during a review of the patch "ext4: don't BUG on inconsistent
journal feature" that when ext4_mark_recovery_complete() returns an error
value, the error handling path does not turn off the enabled quotas,
which triggers the following kmemleak:
================================================================
unreferenced object 0xffff8cf68678e7c0 (size 64):
comm "mount", pid 746, jiffies 4294871231 (age 11.540s)
hex dump (first 32 bytes):
00 90 ef 82 f6 8c ff ff 00 00 00 00 41 01 00 00 ............A...
c7 00 00 00 bd 00 00 00 0a 00 00 00 48 00 00 00 ............H...
backtrace:
[<00000000c561ef24>] __kmem_cache_alloc_node+0x4d4/0x880
[<00000000d4e621d7>] kmalloc_trace+0x39/0x140
[<00000000837eee74>] v2_read_file_info+0x18a/0x3a0
[<0000000088f6c877>] dquot_load_quota_sb+0x2ed/0x770
[<00000000340a4782>] dquot_load_quota_inode+0xc6/0x1c0
[<0000000089a18bd5>] ext4_enable_quotas+0x17e/0x3a0 [ext4]
[<000000003a0268fa>] __ext4_fill_super+0x3448/0x3910 [ext4]
[<00000000b0f2a8a8>] ext4_fill_super+0x13d/0x340 [ext4]
[<000000004a9489c4>] get_tree_bdev+0x1dc/0x370
[<000000006e723bf1>] ext4_get_tree+0x1d/0x30 [ext4]
[<00000000c7cb663d>] vfs_get_tree+0x31/0x160
[<00000000320e1bed>] do_new_mount+0x1d5/0x480
[<00000000c074654c>] path_mount+0x22e/0xbe0
[<0000000003e97a8e>] do_mount+0x95/0xc0
[<000000002f3d3736>] __x64_sys_mount+0xc4/0x160
[<0000000027d2140c>] do_syscall_64+0x3f/0x90
================================================================
To solve this problem, we add a "failed_mount10" tag, and call
ext4_quota_off_umount() in this tag to release the enabled qoutas. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Fix target_cmd_counter leak
The target_cmd_counter struct allocated via target_alloc_cmd_counter() is
never freed, resulting in leaks across various transport types, e.g.:
unreferenced object 0xffff88801f920120 (size 96):
comm "sh", pid 102, jiffies 4294892535 (age 713.412s)
hex dump (first 32 bytes):
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 38 01 92 1f 80 88 ff ff ........8.......
backtrace:
[<00000000e58a6252>] kmalloc_trace+0x11/0x20
[<0000000043af4b2f>] target_alloc_cmd_counter+0x17/0x90 [target_core_mod]
[<000000007da2dfa7>] target_setup_session+0x2d/0x140 [target_core_mod]
[<0000000068feef86>] tcm_loop_tpg_nexus_store+0x19b/0x350 [tcm_loop]
[<000000006a80e021>] configfs_write_iter+0xb1/0x120
[<00000000e9f4d860>] vfs_write+0x2e4/0x3c0
[<000000008143433b>] ksys_write+0x80/0xb0
[<00000000a7df29b2>] do_syscall_64+0x42/0x90
[<0000000053f45fb8>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Free the structure alongside the corresponding iscsit_conn / se_sess
parent. |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: remove unnecessary frame_sz check in bpf_xdp_adjust_tail()
Syzkaller reported the following issue:
=======================================
Too BIG xdp->frame_sz = 131072
WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121
____bpf_xdp_adjust_tail net/core/filter.c:4121 [inline]
WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121
bpf_xdp_adjust_tail+0x466/0xa10 net/core/filter.c:4103
...
Call Trace:
<TASK>
bpf_prog_4add87e5301a4105+0x1a/0x1c
__bpf_prog_run include/linux/filter.h:600 [inline]
bpf_prog_run_xdp include/linux/filter.h:775 [inline]
bpf_prog_run_generic_xdp+0x57e/0x11e0 net/core/dev.c:4721
netif_receive_generic_xdp net/core/dev.c:4807 [inline]
do_xdp_generic+0x35c/0x770 net/core/dev.c:4866
tun_get_user+0x2340/0x3ca0 drivers/net/tun.c:1919
tun_chr_write_iter+0xe8/0x210 drivers/net/tun.c:2043
call_write_iter include/linux/fs.h:1871 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x650/0xe40 fs/read_write.c:584
ksys_write+0x12f/0x250 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
xdp->frame_sz > PAGE_SIZE check was introduced in commit c8741e2bfe87
("xdp: Allow bpf_xdp_adjust_tail() to grow packet size"). But Jesper
Dangaard Brouer <jbrouer@redhat.com> noted that after introducing the
xdp_init_buff() which all XDP driver use - it's safe to remove this
check. The original intend was to catch cases where XDP drivers have
not been updated to use xdp.frame_sz, but that is not longer a concern
(since xdp_init_buff).
Running the initial syzkaller repro it was discovered that the
contiguous physical memory allocation is used for both xdp paths in
tun_get_user(), e.g. tun_build_skb() and tun_alloc_skb(). It was also
stated by Jesper Dangaard Brouer <jbrouer@redhat.com> that XDP can
work on higher order pages, as long as this is contiguous physical
memory (e.g. a page). |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix crash when reading stats while NIC is resetting
efx_net_stats() (.ndo_get_stats64) can be called during an ethtool
selftest, during which time nic_data->mc_stats is NULL as the NIC has
been fini'd. In this case do not attempt to fetch the latest stats
from the hardware, else we will crash on a NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000038
RIP efx_nic_update_stats
abridged calltrace:
efx_ef10_update_stats_pf
efx_net_stats
dev_get_stats
dev_seq_printf_stats
Skipping the read is safe, we will simply give out stale stats.
To ensure that the free in efx_ef10_fini_nic() does not race against
efx_ef10_update_stats_pf(), which could cause a TOCTTOU bug, take the
efx->stats_lock in fini_nic (it is already held across update_stats). |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of alloc->vma in race with munmap()
[ cmllamas: clean forward port from commit 015ac18be7de ("binder: fix
UAF of alloc->vma in race with munmap()") in 5.10 stable. It is needed
in mainline after the revert of commit a43cfc87caaf ("android: binder:
stop saving a pointer to the VMA") as pointed out by Liam. The commit
log and tags have been tweaked to reflect this. ]
In commit 720c24192404 ("ANDROID: binder: change down_write to
down_read") binder assumed the mmap read lock is sufficient to protect
alloc->vma inside binder_update_page_range(). This used to be accurate
until commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in
munmap"), which now downgrades the mmap_lock after detaching the vma
from the rbtree in munmap(). Then it proceeds to teardown and free the
vma with only the read lock held.
This means that accesses to alloc->vma in binder_update_page_range() now
will race with vm_area_free() in munmap() and can cause a UAF as shown
in the following KASAN trace:
==================================================================
BUG: KASAN: use-after-free in vm_insert_page+0x7c/0x1f0
Read of size 8 at addr ffff16204ad00600 by task server/558
CPU: 3 PID: 558 Comm: server Not tainted 5.10.150-00001-gdc8dcf942daa #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2a0
show_stack+0x18/0x2c
dump_stack+0xf8/0x164
print_address_description.constprop.0+0x9c/0x538
kasan_report+0x120/0x200
__asan_load8+0xa0/0xc4
vm_insert_page+0x7c/0x1f0
binder_update_page_range+0x278/0x50c
binder_alloc_new_buf+0x3f0/0xba0
binder_transaction+0x64c/0x3040
binder_thread_write+0x924/0x2020
binder_ioctl+0x1610/0x2e5c
__arm64_sys_ioctl+0xd4/0x120
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Allocated by task 559:
kasan_save_stack+0x38/0x6c
__kasan_kmalloc.constprop.0+0xe4/0xf0
kasan_slab_alloc+0x18/0x2c
kmem_cache_alloc+0x1b0/0x2d0
vm_area_alloc+0x28/0x94
mmap_region+0x378/0x920
do_mmap+0x3f0/0x600
vm_mmap_pgoff+0x150/0x17c
ksys_mmap_pgoff+0x284/0x2dc
__arm64_sys_mmap+0x84/0xa4
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Freed by task 560:
kasan_save_stack+0x38/0x6c
kasan_set_track+0x28/0x40
kasan_set_free_info+0x24/0x4c
__kasan_slab_free+0x100/0x164
kasan_slab_free+0x14/0x20
kmem_cache_free+0xc4/0x34c
vm_area_free+0x1c/0x2c
remove_vma+0x7c/0x94
__do_munmap+0x358/0x710
__vm_munmap+0xbc/0x130
__arm64_sys_munmap+0x4c/0x64
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
[...]
==================================================================
To prevent the race above, revert back to taking the mmap write lock
inside binder_update_page_range(). One might expect an increase of mmap
lock contention. However, binder already serializes these calls via top
level alloc->mutex. Also, there was no performance impact shown when
running the binder benchmark tests. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: mtu3: fix kernel panic at qmu transfer done irq handler
When handle qmu transfer irq, it will unlock @mtu->lock before give back
request, if another thread handle disconnect event at the same time, and
try to disable ep, it may lock @mtu->lock and free qmu ring, then qmu
irq hanlder may get a NULL gpd, avoid the KE by checking gpd's value before
handling it.
e.g.
qmu done irq on cpu0 thread running on cpu1
qmu_done_tx()
handle gpd [0]
mtu3_requ_complete() mtu3_gadget_ep_disable()
unlock @mtu->lock
give back request lock @mtu->lock
mtu3_ep_disable()
mtu3_gpd_ring_free()
unlock @mtu->lock
lock @mtu->lock
get next gpd [1]
[1]: goto [0] to handle next gpd, and next gpd may be NULL. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Echo Call Center Services Trade and Industry Inc. Specto CM allows Stored XSS.This issue affects Specto CM: before 17032025. |
| Unrestricted Upload of File with Dangerous Type vulnerability in Echo Call Center Services Trade and Industry Inc. Specto CM allows Remote Code Inclusion.This issue affects Specto CM: before 17032025. |
| Forgejo before 13.0.2 allows attackers to write to unintended files, and possibly obtain server shell access, because of mishandling of out-of-repository symlink destinations for template repositories. This is also fixed for 11 LTS in 11.0.7 and later. |
| A vulnerability has been found in JD Cloud BE6500 4.4.1.r4308. This issue affects the function sub_4780 of the file /jdcapi. Such manipulation of the argument ddns_name leads to command injection. The attack may be performed from remote. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security vulnerability has been detected in postmanlabs httpbin up to 0.6.1. This affects an unknown function of the file httpbin-master/httpbin/core.py. The manipulation leads to cross site scripting. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| A vulnerability was identified in h-moses moga-mall up to 392d631a5ef15962a9bddeeb9f1269b9085473fa. This vulnerability affects the function addProduct of the file src/main/java/com/ms/product/controller/PmsProductController.java. Such manipulation of the argument objectName leads to unrestricted upload. The attack may be performed from remote. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Verisay Communication and Information Technology Industry and Trade Ltd. Co. Aidango allows Cross-Site Scripting (XSS).This issue affects Aidango: before 2.144.4. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Verisay Communication and Information Technology Industry and Trade Ltd. Co. Titarus allows Cross-Site Scripting (XSS).This issue affects Titarus: before 2.144.4. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Verisay Communication and Information Technology Industry and Trade Ltd. Co. Trizbi allows Cross-Site Scripting (XSS).This issue affects Trizbi: before 2.144.4. |
| An issue was discovered in imonnit.com (2025-04-24) allowing malicious actors to gain escalated privileges via crafted password reset to take over arbitrary user accounts. |