| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| BIND 9.6.0, 9.5.1, 9.5.0, 9.4.3, and earlier does not properly check the return value from the OpenSSL DSA_verify function, which allows remote attackers to bypass validation of the certificate chain via a malformed SSL/TLS signature, a similar vulnerability to CVE-2008-5077. |
| Unspecified vulnerability in ISC BIND 9.3.5-P2-W1, 9.4.2-P2-W1, and 9.5.0-P2-W1 on Windows allows remote attackers to cause a denial of service (UDP client handler termination) via unknown vectors. |
| The DNS protocol, as implemented in (1) BIND 8 and 9 before 9.5.0-P1, 9.4.2-P1, and 9.3.5-P1; (2) Microsoft DNS in Windows 2000 SP4, XP SP2 and SP3, and Server 2003 SP1 and SP2; and other implementations allow remote attackers to spoof DNS traffic via a birthday attack that uses in-bailiwick referrals to conduct cache poisoning against recursive resolvers, related to insufficient randomness of DNS transaction IDs and source ports, aka "DNS Insufficient Socket Entropy Vulnerability" or "the Kaminsky bug." |
| Off-by-one error in the inet_network function in libbind in ISC BIND 9.4.2 and earlier, as used in libc in FreeBSD 6.2 through 7.0-PRERELEASE, allows context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code via crafted input that triggers memory corruption. |
| The (1) NSID_SHUFFLE_ONLY and (2) NSID_USE_POOL PRNG algorithms in ISC BIND 8 before 8.4.7-P1 generate predictable DNS query identifiers when sending outgoing queries such as NOTIFY messages when answering questions as a resolver, which allows remote attackers to poison DNS caches via unknown vectors. NOTE: this issue is different from CVE-2007-2926. |
| ISC BIND 9 through 9.5.0a5 uses a weak random number generator during generation of DNS query ids when answering resolver questions or sending NOTIFY messages to slave name servers, which makes it easier for remote attackers to guess the next query id and perform DNS cache poisoning. |
| dnskeygen in BIND 8.2.4 and earlier, and dnssec-keygen in BIND 9.1.2 and earlier, set insecure permissions for a HMAC-MD5 shared secret key file used for DNS Transactional Signatures (TSIG), which allows attackers to obtain the keys and perform dynamic DNS updates. |
| Format string vulnerability in nslookupComplain function in BIND 4 allows remote attackers to gain root privileges. |
| Denial of service in BIND by improperly closing TCP sessions via so_linger. |
| BIND before 9.2.6-P1 and 9.3.x before 9.3.2-P1 allows remote attackers to cause a denial of service (crash) via a flood of recursive queries, which cause an INSIST failure when the response is received after the recursion queue is empty. |
| BIND 4 and BIND 8 allow remote attackers to access sensitive information such as environment variables. |
| Buffer overflow in BIND 8.2 via NXT records. |
| The supersede_lease function in memory.c in ISC DHCP (dhcpd) server 2.0pl5 allows remote attackers to cause a denial of service (application crash) via a DHCPDISCOVER packet with a 32 byte client-identifier, which causes the packet to be interpreted as a corrupt uid and causes the server to exit with "corrupt lease uid." |
| Unspecified vulnerability in ISC BIND allows remote attackers to cause a denial of service via a crafted DNS message with a "broken" TSIG, as demonstrated by the OUSPG PROTOS DNS test suite. |
| Buffer overflow in nslookupComplain function in BIND 4 allows remote attackers to gain root privileges. |
| BIND before 9.2.6-P1 and 9.3.x before 9.3.2-P1 allows remote attackers to cause a denial of service (crash) via certain SIG queries, which cause an assertion failure when multiple RRsets are returned. |
| When compiled with the -DALLOW_UPDATES option, bind allows dynamic updates to the DNS server, allowing for malicious modification of DNS records. |
| Remote access in AIX innd 1.5.1, using control messages. |
| The default configuration of ISC BIND before 9.4.1-P1, when configured as a caching name server, allows recursive queries and provides additional delegation information to arbitrary IP addresses, which allows remote attackers to cause a denial of service (traffic amplification) via DNS queries with spoofed source IP addresses. |
| BIND 4 (BIND4) and BIND 8 (BIND8), if used as a target forwarder, allows remote attackers to gain privileged access via a "Kashpureff-style DNS cache corruption" attack. |