| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Memory safety bugs present in Firefox 61 and Firefox ESR 60.1. Some of these bugs showed evidence of memory corruption and we presume that with enough effort that some of these could be exploited to run arbitrary code. This vulnerability affects Firefox < 62, Firefox ESR < 60.2, and Thunderbird < 60.2.1. |
| Mozilla developers and community members reported memory safety bugs present in Firefox 63 and Firefox ESR 60.3. Some of these bugs showed evidence of memory corruption and we presume that with enough effort that some of these could be exploited to run arbitrary code. This vulnerability affects Thunderbird < 60.4, Firefox ESR < 60.4, and Firefox < 64. |
| A buffer overflow can occur in the Skia library during buffer offset calculations with hardware accelerated canvas 2D actions due to the use of 32-bit calculations instead of 64-bit. This results in a potentially exploitable crash. This vulnerability affects Thunderbird < 60.4, Firefox ESR < 60.4, and Firefox < 64. |
| Memory safety bugs were reported in Firefox 59, Firefox ESR 52.7, and Thunderbird 52.7. Some of these bugs showed evidence of memory corruption and we presume that with enough effort that some of these could be exploited to run arbitrary code. This vulnerability affects Thunderbird < 52.8, Thunderbird ESR < 52.8, Firefox < 60, and Firefox ESR < 52.8. |
| A buffer overflow was found during UTF8 to Unicode string conversion within JavaScript with extremely large amounts of data. This vulnerability requires the use of a malicious or vulnerable legacy extension in order to occur. This vulnerability affects Thunderbird ESR < 52.8, Thunderbird < 52.8, and Firefox ESR < 52.8. |
| Empty or malformed p256-ECDH public keys may trigger a segmentation fault due values being improperly sanitized before being copied into memory and used. This vulnerability affects Firefox ESR < 60.8, Firefox < 68, and Thunderbird < 60.8. |
| Stack-based buffer overflow in the evutil_parse_sockaddr_port function in evutil.c in libevent before 2.1.6-beta allows attackers to cause a denial of service (segmentation fault) via vectors involving a long string in brackets in the ip_as_string argument. |
| Mozilla developers and community members reported memory safety bugs present in Firefox 68, Firefox ESR 68, and Firefox 60.8. Some of these bugs showed evidence of memory corruption and we presume that with enough effort that some of these could be exploited to run arbitrary code. This vulnerability affects Firefox < 69, Thunderbird < 68.1, Thunderbird < 60.9, Firefox ESR < 60.9, and Firefox ESR < 68.1. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix incorrect mpc_combine array size
[why]
MAX_SURFACES is per stream, while MAX_PLANES is per asic. The
mpc_combine is an array that records all the planes per asic. Therefore
MAX_PLANES should be used as the array size. Using MAX_SURFACES causes
array overflow when there are more than 3 planes.
[how]
Use the MAX_PLANES for the mpc_combine array size. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix reading strings from synthetic events
The follow commands caused a crash:
# cd /sys/kernel/tracing
# echo 's:open char file[]' > dynamic_events
# echo 'hist:keys=common_pid:file=filename:onchange($file).trace(open,$file)' > events/syscalls/sys_enter_openat/trigger'
# echo 1 > events/synthetic/open/enable
BOOM!
The problem is that the synthetic event field "char file[]" will read
the value given to it as a string without any memory checks to make sure
the address is valid. The above example will pass in the user space
address and the sythetic event code will happily call strlen() on it
and then strscpy() where either one will cause an oops when accessing
user space addresses.
Use the helper functions from trace_kprobe and trace_eprobe that can
read strings safely (and actually succeed when the address is from user
space and the memory is mapped in).
Now the above can show:
packagekitd-1721 [000] ...2. 104.597170: open: file=/usr/lib/rpm/fileattrs/cmake.attr
in:imjournal-978 [006] ...2. 104.599642: open: file=/var/lib/rsyslog/imjournal.state.tmp
packagekitd-1721 [000] ...2. 104.626308: open: file=/usr/lib/rpm/fileattrs/debuginfo.attr |
| The fetch function in file thinkphp\library\think\Template.php in ThinkPHP 5.0.24 allows attackers to read arbitrary files via crafted file path in a template value. |
| Out of bounds read in WebGPU in Google Chrome on Android prior to 142.0.7444.137 allowed a remote attacker to perform an out of bounds memory write via a crafted HTML page. (Chromium security severity: High) |
| Heap buffer overflow in Sync in Google Chrome prior to 141.0.7390.65 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: High) |
| Out of bounds memory access in V8 in Google Chrome prior to 141.0.7390.122 allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High) |
| This issue was addressed by removing the vulnerable code. This issue is fixed in tvOS 18.4.1, visionOS 2.4.1, iOS iOS 18.4.1 and iPadOS 18.4.1, macOS Sequoia 15.4.1. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. Apple is aware of a report that this issue may have been exploited in an extremely sophisticated attack against specific targeted individuals on iOS. |
| A flaw was found in the cookie date handling logic of the libsoup HTTP library, widely used by GNOME and other applications for web communication. When processing cookies with specially crafted expiration dates, the library may perform an out-of-bounds memory read. This flaw could result in unintended disclosure of memory contents, potentially exposing sensitive information from the process using libsoup. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: qcom: fix writes in read-only memory region
This commit fixes a kernel oops because of a write in some read-only memory:
[ 9.068287] Unable to handle kernel write to read-only memory at virtual address ffff800009240ad8
..snip..
[ 9.138790] Internal error: Oops: 9600004f [#1] PREEMPT SMP
..snip..
[ 9.269161] Call trace:
[ 9.276271] __memcpy+0x5c/0x230
[ 9.278531] snprintf+0x58/0x80
[ 9.282002] qcom_cpufreq_msm8939_name_version+0xb4/0x190
[ 9.284869] qcom_cpufreq_probe+0xc8/0x39c
..snip..
The following line defines a pointer that point to a char buffer stored
in read-only memory:
char *pvs_name = "speedXX-pvsXX-vXX";
This pointer is meant to hold a template "speedXX-pvsXX-vXX" where the
XX values get overridden by the qcom_cpufreq_krait_name_version function. Since
the template is actually stored in read-only memory, when the function
executes the following call we get an oops:
snprintf(*pvs_name, sizeof("speedXX-pvsXX-vXX"), "speed%d-pvs%d-v%d",
speed, pvs, pvs_ver);
To fix this issue, we instead store the template name onto the stack by
using the following syntax:
char pvs_name_buffer[] = "speedXX-pvsXX-vXX";
Because the `pvs_name` needs to be able to be assigned to NULL, the
template buffer is stored in the pvs_name_buffer and not under the
pvs_name variable. |
| A stack buffer overflow vulnerability exists in the ToToLink LR1200GB (V9.1.0u.6619_B20230130) and NR1800X (V9.1.0u.6681_B20230703) Router firmware within the cstecgi.cgi binary (sub_42F32C function). The web interface reads the "lang" parameter and constructs Help URL strings using sprintf() into fixed-size stack buffers without proper length validation. Maliciously crafted input can overflow these buffers, potentially leading to arbitrary code execution or memory corruption, without requiring authentication. |
| Improper register access control in ASP may allow a privileged attacker to perform unauthorized access to ASP’s Crypto Co-Processor (CCP) registers from x86 resulting in potential loss of control of cryptographic key pointer/index leading to loss of integrity or confidentiality. |
| A stack-based buffer overflow exists in the UtilConfigHome.csp endpoint of InterSystems Caché 2009.1. The vulnerability is triggered by sending a specially crafted HTTP GET request containing an oversized argument to the .csp handler. Due to insufficient bounds checking, the input overflows a stack buffer, allowing an attacker to overwrite control structures and execute arbitrary code. It is unknown if this vulnerability was patched and an affected version range remains undefined. |