| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tests: helpers: Avoid a driver uaf
when using __drm_kunit_helper_alloc_drm_device() the driver may be
dereferenced by device-managed resources up until the device is
freed, which is typically later than the kunit-managed resource code
frees it. Fix this by simply make the driver device-managed as well.
In short, the sequence leading to the UAF is as follows:
INIT:
Code allocates a struct device as a kunit-managed resource.
Code allocates a drm driver as a kunit-managed resource.
Code allocates a drm device as a device-managed resource.
EXIT:
Kunit resource cleanup frees the drm driver
Kunit resource cleanup puts the struct device, which starts a
device-managed resource cleanup
device-managed cleanup calls drm_dev_put()
drm_dev_put() dereferences the (now freed) drm driver -> Boom.
Related KASAN message:
[55272.551542] ==================================================================
[55272.551551] BUG: KASAN: slab-use-after-free in drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551603] Read of size 8 at addr ffff888127502828 by task kunit_try_catch/10353
[55272.551612] CPU: 4 PID: 10353 Comm: kunit_try_catch Tainted: G U N 6.5.0-rc7+ #155
[55272.551620] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 0403 01/26/2021
[55272.551626] Call Trace:
[55272.551629] <TASK>
[55272.551633] dump_stack_lvl+0x57/0x90
[55272.551639] print_report+0xcf/0x630
[55272.551645] ? _raw_spin_lock_irqsave+0x5f/0x70
[55272.551652] ? drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551694] kasan_report+0xd7/0x110
[55272.551699] ? drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551742] drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551783] devres_release_all+0x15d/0x1f0
[55272.551790] ? __pfx_devres_release_all+0x10/0x10
[55272.551797] device_unbind_cleanup+0x16/0x1a0
[55272.551802] device_release_driver_internal+0x3e5/0x540
[55272.551808] ? kobject_put+0x5d/0x4b0
[55272.551814] bus_remove_device+0x1f1/0x3f0
[55272.551819] device_del+0x342/0x910
[55272.551826] ? __pfx_device_del+0x10/0x10
[55272.551830] ? lock_release+0x339/0x5e0
[55272.551836] ? kunit_remove_resource+0x128/0x290 [kunit]
[55272.551845] ? __pfx_lock_release+0x10/0x10
[55272.551851] platform_device_del.part.0+0x1f/0x1e0
[55272.551856] ? _raw_spin_unlock_irqrestore+0x30/0x60
[55272.551863] kunit_remove_resource+0x195/0x290 [kunit]
[55272.551871] ? _raw_spin_unlock_irqrestore+0x30/0x60
[55272.551877] kunit_cleanup+0x78/0x120 [kunit]
[55272.551885] ? __kthread_parkme+0xc1/0x1f0
[55272.551891] ? __pfx_kunit_try_run_case_cleanup+0x10/0x10 [kunit]
[55272.551900] ? __pfx_kunit_generic_run_threadfn_adapter+0x10/0x10 [kunit]
[55272.551909] kunit_generic_run_threadfn_adapter+0x4a/0x90 [kunit]
[55272.551919] kthread+0x2e7/0x3c0
[55272.551924] ? __pfx_kthread+0x10/0x10
[55272.551929] ret_from_fork+0x2d/0x70
[55272.551935] ? __pfx_kthread+0x10/0x10
[55272.551940] ret_from_fork_asm+0x1b/0x30
[55272.551948] </TASK>
[55272.551953] Allocated by task 10351:
[55272.551956] kasan_save_stack+0x1c/0x40
[55272.551962] kasan_set_track+0x21/0x30
[55272.551966] __kasan_kmalloc+0x8b/0x90
[55272.551970] __kmalloc+0x5e/0x160
[55272.551976] kunit_kmalloc_array+0x1c/0x50 [kunit]
[55272.551984] drm_exec_test_init+0xfa/0x2c0 [drm_exec_test]
[55272.551991] kunit_try_run_case+0xdd/0x250 [kunit]
[55272.551999] kunit_generic_run_threadfn_adapter+0x4a/0x90 [kunit]
[55272.552008] kthread+0x2e7/0x3c0
[55272.552012] ret_from_fork+0x2d/0x70
[55272.552017] ret_from_fork_asm+0x1b/0x30
[55272.552024] Freed by task 10353:
[55272.552027] kasan_save_stack+0x1c/0x40
[55272.552032] kasan_set_track+0x21/0x30
[55272.552036] kasan_save_free_info+0x27/0x40
[55272.552041] __kasan_slab_free+0x106/0x180
[55272.552046] slab_free_freelist_hook+0xb3/0x160
[55272.552051] __kmem_cache_free+0xb2/0x290
[55272.552056] kunit_remove_resource+0x195/0x290 [kunit]
[55272.552064] kunit_cleanup+0x7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: netup_unidvb: fix use-after-free at del_timer()
When Universal DVB card is detaching, netup_unidvb_dma_fini()
uses del_timer() to stop dma->timeout timer. But when timer
handler netup_unidvb_dma_timeout() is running, del_timer()
could not stop it. As a result, the use-after-free bug could
happen. The process is shown below:
(cleanup routine) | (timer routine)
| mod_timer(&dev->tx_sim_timer, ..)
netup_unidvb_finidev() | (wait a time)
netup_unidvb_dma_fini() | netup_unidvb_dma_timeout()
del_timer(&dma->timeout); |
| ndev->pci_dev->dev //USE
Fix by changing del_timer() to del_timer_sync(). |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
There is an use-after-free reported by KASAN:
BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82
Read of size 1 at addr ffff888112afc460 by task modprobe/2111
CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
Call Trace:
<TASK>
kasan_report+0xae/0xe0
acpi_ut_remove_reference+0x3b/0x82
acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5
acpi_ds_store_object_to_local+0x15d/0x3a0
acpi_ex_store+0x78d/0x7fd
acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b
acpi_ps_parse_aml+0x217/0x8d5
...
</TASK>
The root cause of the problem is that the acpi_operand_object
is freed when acpi_ut_walk_package_tree() fails in
acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in
acpi_ut_copy_iobject_to_iobject(). The problem was introduced
by "8aa5e56eeb61" commit, this commit is to fix memory leak in
acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove
operation, lead to "acpi_operand_object" used after free.
Fix it by removing acpi_ut_remove_reference() in
acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage()
is called to copy an internal package object into another internal
package object, when it fails, the memory of acpi_operand_object
should be freed by the caller. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: libsas: Fix use-after-free bug in smp_execute_task_sg()
When executing SMP task failed, the smp_execute_task_sg() calls del_timer()
to delete "slow_task->timer". However, if the timer handler
sas_task_internal_timedout() is running, the del_timer() in
smp_execute_task_sg() will not stop it and a UAF will happen. The process
is shown below:
(thread 1) | (thread 2)
smp_execute_task_sg() | sas_task_internal_timedout()
... |
del_timer() |
... | ...
sas_free_task(task) |
kfree(task->slow_task) //FREE|
| task->slow_task->... //USE
Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure
the timer handler have finished before the "task->slow_task" is
deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Avoid double destroy of default endpoint
The rpmsg_dev_remove() in rpmsg_core is the place for releasing
this default endpoint.
So need to avoid destroying the default endpoint in
rpmsg_chrdev_eptdev_destroy(), this should be the same as
rpmsg_eptdev_release(). Otherwise there will be double destroy
issue that ept->refcount report warning:
refcount_t: underflow; use-after-free.
Call trace:
refcount_warn_saturate+0xf8/0x150
virtio_rpmsg_destroy_ept+0xd4/0xec
rpmsg_dev_remove+0x60/0x70
The issue can be reproduced by stopping remoteproc before
closing the /dev/rpmsgX. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of reference counting to cause a potential use after free.
Improper reference counting on an internal resource caused scenario where potential for use after free was present. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of resources reference counting creating a potential use after free scenario.
Improper resource management and reference counting on an internal resource caused scenario where potential write use after free was present. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 7.4.0, FortiOS 7.2.0 through 7.2.5, FortiOS 7.0.0 through 7.0.12, FortiOS 6.4 all versions, FortiPAM 1.1 all versions, FortiPAM 1.0 all versions, FortiProxy 7.4.0 through 7.4.1, FortiProxy 7.2.0 through 7.2.7, FortiProxy 7.0.0 through 7.0.13 allows a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 6.4 all versions may allow a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| Use after free in Media in Google Chrome prior to 81.0.4044.92 allowed a remote attacker to execute arbitrary code via a crafted HTML page. |
| A flaw was found in libxslt where the attribute type, atype, flags are modified in a way that corrupts internal memory management. When XSLT functions, such as the key() process, result in tree fragments, this corruption prevents the proper cleanup of ID attributes. As a result, the system may access freed memory, causing crashes or enabling attackers to trigger heap corruption. |
| Espressif ESP-IDF USB Host HID (Human Interface Device) Driver allows access to HID devices. Prior to 1.1.0, calls to hid_host_device_close() can free the same usb_transfer_t twice. The USB event callback and user code share the hid_iface_t state without locking, so both can tear down a READY interface simultaneously, corrupting heap metadata inside the ESP USB host stack. This vulnerability is fixed in 1.1.0. |
| Espressif ESP-IDF USB Host HID (Human Interface Device) Driver allows access to HID devices. Prior to 1.1.0, usb_class_request_get_descriptor() frees and reallocates hid_device->ctrl_xfer when an oversized descriptor is requested but continues to use the stale local pointer, leading to an immediate use-after-free when processing attacker-controlled Report Descriptor lengths. This vulnerability is fixed in 1.1.0. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to 7.1.2-9 and 6.9.13-34, there is a vulnerability in ImageMagick’s Magick++ layer that manifests when Options::fontFamily is invoked with an empty string. Clearing a font family calls RelinquishMagickMemory on _drawInfo->font, freeing the font string but leaving _drawInfo->font pointing to freed memory while _drawInfo->family is set to that (now-invalid) pointer. Any later cleanup or reuse of _drawInfo->font re-frees or dereferences dangling memory. DestroyDrawInfo and other setters (Options::font, Image::font) assume _drawInfo->font remains valid, so destruction or subsequent updates trigger crashes or heap corruption. This vulnerability is fixed in 7.1.2-9 and 6.9.13-34. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1 and below contain a Use After Free vulnerability in the CIccXform::Create() function, where it deletes the hint. This issue is fixed in version 2.3.1.1. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below contain Use After Free, Heap-based Buffer Overflow and Integer Overflow or Wraparound and Out-of-bounds Write vulnerabilities in its CIccSparseMatrix::CIccSparseMatrix function. This issue is fixed in version 2.3.1.2. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: Fix use-after-free in cifs_fill_dirent
There is a race condition in the readdir concurrency process, which may
access the rsp buffer after it has been released, triggering the
following KASAN warning.
==================================================================
BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs]
Read of size 4 at addr ffff8880099b819c by task a.out/342975
CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
print_report+0xce/0x640
kasan_report+0xb8/0xf0
cifs_fill_dirent+0xb03/0xb60 [cifs]
cifs_readdir+0x12cb/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f996f64b9f9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8
RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e
RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88
R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000
</TASK>
Allocated by task 408:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
__kasan_slab_alloc+0x6e/0x70
kmem_cache_alloc_noprof+0x117/0x3d0
mempool_alloc_noprof+0xf2/0x2c0
cifs_buf_get+0x36/0x80 [cifs]
allocate_buffers+0x1d2/0x330 [cifs]
cifs_demultiplex_thread+0x22b/0x2690 [cifs]
kthread+0x394/0x720
ret_from_fork+0x34/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 342979:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x37/0x50
kmem_cache_free+0x2b8/0x500
cifs_buf_release+0x3c/0x70 [cifs]
cifs_readdir+0x1c97/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents64+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The buggy address belongs to the object at ffff8880099b8000
which belongs to the cache cifs_request of size 16588
The buggy address is located 412 bytes inside of
freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8
head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x80000000000040(head|node=0|zone=1)
page_type: f5(slab)
raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff
head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
POC is available in the link [1].
The problem triggering process is as follows:
Process 1 Process 2
-----------------------------------
---truncated--- |
| In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10149882; Issue ID: MSV-4673. |
| In display, there is a possible memory corruption due to use after free. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10182914; Issue ID: MSV-4699. |