| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Validate payload length before processing block
Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load()
to be done before the block is processed.
The check that the length of a block payload does not exceed the number
of remaining bytes in the firwmware file buffer was being done near the
end of the loop iteration. However, some code before that check used the
length field without validating it. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: remove lock of otg mode during gadget suspend/resume to avoid deadlock
When config CONFIG_USB_DWC3_DUAL_ROLE is selected, and trigger system
to enter suspend status with below command:
echo mem > /sys/power/state
There will be a deadlock issue occurring. Detailed invoking path as
below:
dwc3_suspend_common()
spin_lock_irqsave(&dwc->lock, flags); <-- 1st
dwc3_gadget_suspend(dwc);
dwc3_gadget_soft_disconnect(dwc);
spin_lock_irqsave(&dwc->lock, flags); <-- 2nd
This issue is exposed by commit c7ebd8149ee5 ("usb: dwc3: gadget: Fix
NULL pointer dereference in dwc3_gadget_suspend") that removes the code
of checking whether dwc->gadget_driver is NULL or not. It causes the
following code is executed and deadlock occurs when trying to get the
spinlock. In fact, the root cause is the commit 5265397f9442("usb: dwc3:
Remove DWC3 locking during gadget suspend/resume") that forgot to remove
the lock of otg mode. So, remove the redundant lock of otg mode during
gadget suspend/resume. |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcp251xfd: fix infinite loop when xmit fails
When the mcp251xfd_start_xmit() function fails, the driver stops
processing messages, and the interrupt routine does not return,
running indefinitely even after killing the running application.
Error messages:
[ 441.298819] mcp251xfd spi2.0 can0: ERROR in mcp251xfd_start_xmit: -16
[ 441.306498] mcp251xfd spi2.0 can0: Transmit Event FIFO buffer not empty. (seq=0x000017c7, tef_tail=0x000017cf, tef_head=0x000017d0, tx_head=0x000017d3).
... and repeat forever.
The issue can be triggered when multiple devices share the same SPI
interface. And there is concurrent access to the bus.
The problem occurs because tx_ring->head increments even if
mcp251xfd_start_xmit() fails. Consequently, the driver skips one TX
package while still expecting a response in
mcp251xfd_handle_tefif_one().
Resolve the issue by starting a workqueue to write the tx obj
synchronously if err = -EBUSY. In case of another error, decrement
tx_ring->head, remove skb from the echo stack, and drop the message.
[mkl: use more imperative wording in patch description] |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix possible deadlock in io_register_iowq_max_workers()
The io_register_iowq_max_workers() function calls io_put_sq_data(),
which acquires the sqd->lock without releasing the uring_lock.
Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock
before acquiring sqd->lock"), this can lead to a potential deadlock
situation.
To resolve this issue, the uring_lock is released before calling
io_put_sq_data(), and then it is re-acquired after the function call.
This change ensures that the locks are acquired in the correct
order, preventing the possibility of a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ks8851: Fix deadlock with the SPI chip variant
When SMP is enabled and spinlocks are actually functional then there is
a deadlock with the 'statelock' spinlock between ks8851_start_xmit_spi
and ks8851_irq:
watchdog: BUG: soft lockup - CPU#0 stuck for 27s!
call trace:
queued_spin_lock_slowpath+0x100/0x284
do_raw_spin_lock+0x34/0x44
ks8851_start_xmit_spi+0x30/0xb8
ks8851_start_xmit+0x14/0x20
netdev_start_xmit+0x40/0x6c
dev_hard_start_xmit+0x6c/0xbc
sch_direct_xmit+0xa4/0x22c
__qdisc_run+0x138/0x3fc
qdisc_run+0x24/0x3c
net_tx_action+0xf8/0x130
handle_softirqs+0x1ac/0x1f0
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x3c/0x58
do_softirq_own_stack+0x1c/0x28
__irq_exit_rcu+0x54/0x9c
irq_exit_rcu+0x10/0x1c
el1_interrupt+0x38/0x50
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x64/0x68
__netif_schedule+0x6c/0x80
netif_tx_wake_queue+0x38/0x48
ks8851_irq+0xb8/0x2c8
irq_thread_fn+0x2c/0x74
irq_thread+0x10c/0x1b0
kthread+0xc8/0xd8
ret_from_fork+0x10/0x20
This issue has not been identified earlier because tests were done on
a device with SMP disabled and so spinlocks were actually NOPs.
Now use spin_(un)lock_bh for TX queue related locking to avoid execution
of softirq work synchronously that would lead to a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_api: fix possible infinite loop in tcf_idr_check_alloc()
syzbot found hanging tasks waiting on rtnl_lock [1]
A reproducer is available in the syzbot bug.
When a request to add multiple actions with the same index is sent, the
second request will block forever on the first request. This holds
rtnl_lock, and causes tasks to hang.
Return -EAGAIN to prevent infinite looping, while keeping documented
behavior.
[1]
INFO: task kworker/1:0:5088 blocked for more than 143 seconds.
Not tainted 6.9.0-rc4-syzkaller-00173-g3cdb45594619 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/1:0 state:D stack:23744 pid:5088 tgid:5088 ppid:2 flags:0x00004000
Workqueue: events_power_efficient reg_check_chans_work
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5409 [inline]
__schedule+0xf15/0x5d00 kernel/sched/core.c:6746
__schedule_loop kernel/sched/core.c:6823 [inline]
schedule+0xe7/0x350 kernel/sched/core.c:6838
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:6895
__mutex_lock_common kernel/locking/mutex.c:684 [inline]
__mutex_lock+0x5b8/0x9c0 kernel/locking/mutex.c:752
wiphy_lock include/net/cfg80211.h:5953 [inline]
reg_leave_invalid_chans net/wireless/reg.c:2466 [inline]
reg_check_chans_work+0x10a/0x10e0 net/wireless/reg.c:2481 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: remove clear SB_INLINECRYPT flag in default_options
In f2fs_remount, SB_INLINECRYPT flag will be clear and re-set.
If create new file or open file during this gap, these files
will not use inlinecrypt. Worse case, it may lead to data
corruption if wrappedkey_v0 is enable.
Thread A: Thread B:
-f2fs_remount -f2fs_file_open or f2fs_new_inode
-default_options
<- clear SB_INLINECRYPT flag
-fscrypt_select_encryption_impl
-parse_options
<- set SB_INLINECRYPT again |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Fix deadlock in ieee80211_sta_ps_deliver_wakeup()
The ieee80211_sta_ps_deliver_wakeup() function takes sta->ps_lock to
synchronizes with ieee80211_tx_h_unicast_ps_buf() which is called from
softirq context. However using only spin_lock() to get sta->ps_lock in
ieee80211_sta_ps_deliver_wakeup() does not prevent softirq to execute
on this same CPU, to run ieee80211_tx_h_unicast_ps_buf() and try to
take this same lock ending in deadlock. Below is an example of rcu stall
that arises in such situation.
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 2-....: (42413413 ticks this GP) idle=b154/1/0x4000000000000000 softirq=1763/1765 fqs=21206996
rcu: (t=42586894 jiffies g=2057 q=362405 ncpus=4)
CPU: 2 PID: 719 Comm: wpa_supplicant Tainted: G W 6.4.0-02158-g1b062f552873 #742
Hardware name: RPT (r1) (DT)
pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : queued_spin_lock_slowpath+0x58/0x2d0
lr : invoke_tx_handlers_early+0x5b4/0x5c0
sp : ffff00001ef64660
x29: ffff00001ef64660 x28: ffff000009bc1070 x27: ffff000009bc0ad8
x26: ffff000009bc0900 x25: ffff00001ef647a8 x24: 0000000000000000
x23: ffff000009bc0900 x22: ffff000009bc0900 x21: ffff00000ac0e000
x20: ffff00000a279e00 x19: ffff00001ef646e8 x18: 0000000000000000
x17: ffff800016468000 x16: ffff00001ef608c0 x15: 0010533c93f64f80
x14: 0010395c9faa3946 x13: 0000000000000000 x12: 00000000fa83b2da
x11: 000000012edeceea x10: ffff0000010fbe00 x9 : 0000000000895440
x8 : 000000000010533c x7 : ffff00000ad8b740 x6 : ffff00000c350880
x5 : 0000000000000007 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffff00000ac0e0e8
Call trace:
queued_spin_lock_slowpath+0x58/0x2d0
ieee80211_tx+0x80/0x12c
ieee80211_tx_pending+0x110/0x278
tasklet_action_common.constprop.0+0x10c/0x144
tasklet_action+0x20/0x28
_stext+0x11c/0x284
____do_softirq+0xc/0x14
call_on_irq_stack+0x24/0x34
do_softirq_own_stack+0x18/0x20
do_softirq+0x74/0x7c
__local_bh_enable_ip+0xa0/0xa4
_ieee80211_wake_txqs+0x3b0/0x4b8
__ieee80211_wake_queue+0x12c/0x168
ieee80211_add_pending_skbs+0xec/0x138
ieee80211_sta_ps_deliver_wakeup+0x2a4/0x480
ieee80211_mps_sta_status_update.part.0+0xd8/0x11c
ieee80211_mps_sta_status_update+0x18/0x24
sta_apply_parameters+0x3bc/0x4c0
ieee80211_change_station+0x1b8/0x2dc
nl80211_set_station+0x444/0x49c
genl_family_rcv_msg_doit.isra.0+0xa4/0xfc
genl_rcv_msg+0x1b0/0x244
netlink_rcv_skb+0x38/0x10c
genl_rcv+0x34/0x48
netlink_unicast+0x254/0x2bc
netlink_sendmsg+0x190/0x3b4
____sys_sendmsg+0x1e8/0x218
___sys_sendmsg+0x68/0x8c
__sys_sendmsg+0x44/0x84
__arm64_sys_sendmsg+0x20/0x28
do_el0_svc+0x6c/0xe8
el0_svc+0x14/0x48
el0t_64_sync_handler+0xb0/0xb4
el0t_64_sync+0x14c/0x150
Using spin_lock_bh()/spin_unlock_bh() instead prevents softirq to raise
on the same CPU that is holding the lock. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: remove .ndo_poll_controller to avoid deadlocks
There is a deadlock issue found in sungem driver, please refer to the
commit ac0a230f719b ("eth: sungem: remove .ndo_poll_controller to avoid
deadlocks"). The root cause of the issue is that netpoll is in atomic
context and disable_irq() is called by .ndo_poll_controller interface
of sungem driver, however, disable_irq() might sleep. After analyzing
the implementation of fec_poll_controller(), the fec driver should have
the same issue. Due to the fec driver uses NAPI for TX completions, the
.ndo_poll_controller is unnecessary to be implemented in the fec driver,
so fec_poll_controller() can be safely removed. |
| In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Remove useless locks in usbtv_video_free()
Remove locks calls in usbtv_video_free() because
are useless and may led to a deadlock as reported here:
https://syzkaller.appspot.com/x/bisect.txt?x=166dc872180000
Also remove usbtv_stop() call since it will be called when
unregistering the device.
Before 'c838530d230b' this issue would only be noticed if you
disconnect while streaming and now it is noticeable even when
disconnecting while not streaming.
[hverkuil: fix minor spelling mistake in log message] |
| Tokens in CTFd used for account activation and password resetting can be used interchangeably for these operations. When used, they are sent to the server as a GET parameter and they are not single use, which means, that during token expiration time an on-path attacker might reuse such a token to change user's password and take over the account. Moreover, the tokens also include base64 encoded user email.
This issue impacts releases up to 3.7.4 and was addressed by pull request 2679 https://github.com/CTFd/CTFd/pull/2679 included in 3.7.5 release. |
| While assignment of a user to a team (bracket) in CTFd should be possible only once, at the registration, a flaw in logic implementation allows an authenticated user to reset it's bracket and then pick a new one, joining another team while a competition is already ongoing.
This issue impacts releases from 3.7.0 up to 3.7.4 and was addressed by pull request 2636 https://github.com/CTFd/CTFd/pull/2636 included in 3.7.5 release. |
| DOCSIS dissector crash in Wireshark 4.2.0 allows denial of service via packet injection or crafted capture file |
| BT SDP dissector infinite loop in Wireshark 4.0.0 to 4.0.7 and 3.6.0 to 3.6.15 allows denial of service via packet injection or crafted capture file |
| XRA dissector infinite loop in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via packet injection or crafted capture file |
| GDSDB infinite loop in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via packet injection or crafted capture file |
| LISP dissector large loop in Wireshark 4.0.0 to 4.0.4 and 3.6.0 to 3.6.12 allows denial of service via packet injection or crafted capture file |
| Excessive loops in multiple dissectors in Wireshark 4.0.0 to 4.0.2 and 3.6.0 to 3.6.10 and allows denial of service via packet injection or crafted capture file |