| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: ip_gre: make ipgre_header() robust
Analog to commit db5b4e39c4e6 ("ip6_gre: make ip6gre_header() robust")
Over the years, syzbot found many ways to crash the kernel
in ipgre_header() [1].
This involves team or bonding drivers ability to dynamically
change their dev->needed_headroom and/or dev->hard_header_len
In this particular crash mld_newpack() allocated an skb
with a too small reserve/headroom, and by the time mld_sendpack()
was called, syzbot managed to attach an ipgre device.
[1]
skbuff: skb_under_panic: text:ffffffff89ea3cb7 len:2030915468 put:2030915372 head:ffff888058b43000 data:ffff887fdfa6e194 tail:0x120 end:0x6c0 dev:team0
kernel BUG at net/core/skbuff.c:213 !
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 1 UID: 0 PID: 1322 Comm: kworker/1:9 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Workqueue: mld mld_ifc_work
RIP: 0010:skb_panic+0x157/0x160 net/core/skbuff.c:213
Call Trace:
<TASK>
skb_under_panic net/core/skbuff.c:223 [inline]
skb_push+0xc3/0xe0 net/core/skbuff.c:2641
ipgre_header+0x67/0x290 net/ipv4/ip_gre.c:897
dev_hard_header include/linux/netdevice.h:3436 [inline]
neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618
NF_HOOK_COND include/linux/netfilter.h:307 [inline]
ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247
NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318
mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855
mld_send_cr net/ipv6/mcast.c:2154 [inline]
mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 |
| In the Linux kernel, the following vulnerability has been resolved:
net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback
octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to
ioq_vector. If request_irq() fails part-way, the rollback loop calls
free_irq() with dev_id set to 'oct', which does not match the original
dev_id and may leave the irqaction registered.
This can keep IRQ handlers alive while ioq_vector is later freed during
unwind/teardown, leading to a use-after-free or crash when an interrupt
fires.
Fix the error path to free IRQs with the same ioq_vector dev_id used
during request_irq(). |
| A security vulnerability has been detected in Beetel 777VR1 up to 01.00.09/01.00.09_55. This issue affects some unknown processing of the component UART Interface. The manipulation leads to improper restriction of excessive authentication attempts. It is possible to launch the attack on the physical device. The attack's complexity is rated as high. The exploitability is assessed as difficult. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix possible UAF in macvlan_forward_source()
Add RCU protection on (struct macvlan_source_entry)->vlan.
Whenever macvlan_hash_del_source() is called, we must clear
entry->vlan pointer before RCU grace period starts.
This allows macvlan_forward_source() to skip over
entries queued for freeing.
Note that macvlan_dev are already RCU protected, as they
are embedded in a standard netdev (netdev_priv(ndev)).
https: //lore.kernel.org/netdev/695fb1e8.050a0220.1c677c.039f.GAE@google.com/T/#u |
| In the Linux kernel, the following vulnerability has been resolved:
lib/buildid: use __kernel_read() for sleepable context
Prevent a "BUG: unable to handle kernel NULL pointer dereference in
filemap_read_folio".
For the sleepable context, convert freader to use __kernel_read() instead
of direct page cache access via read_cache_folio(). This simplifies the
faultable code path by using the standard kernel file reading interface
which handles all the complexity of reading file data.
At the moment we are not changing the code for non-sleepable context which
uses filemap_get_folio() and only succeeds if the target folios are
already in memory and up-to-date. The reason is to keep the patch simple
and easier to backport to stable kernels.
Syzbot repro does not crash the kernel anymore and the selftests run
successfully.
In the follow up we will make __kernel_read() with IOCB_NOWAIT work for
non-sleepable contexts. In addition, I would like to replace the
secretmem check with a more generic approach and will add fstest for the
buildid code. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv()
Blamed commit did not take care of VLAN encapsulations
as spotted by syzbot [1].
Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull().
[1]
BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
__INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729
__ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860
ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903
gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1
ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438
ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500
ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590
dst_input include/net/dst.h:474 [inline]
ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:318 [inline]
ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311
__netif_receive_skb_one_core net/core/dev.c:6139 [inline]
__netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252
netif_receive_skb_internal net/core/dev.c:6338 [inline]
netif_receive_skb+0x57/0x630 net/core/dev.c:6397
tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485
tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4960 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315
kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586
__alloc_skb+0x805/0x1040 net/core/skbuff.c:690
alloc_skb include/linux/skbuff.h:1383 [inline]
alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712
sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995
tun_alloc_skb drivers/net/tun.c:1461 [inline]
tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix KMS with 3D on HW version 10
HW version 10 does not have GB Surfaces so there is no backing buffer for
surface backed FBs. This would result in a nullptr dereference and crash
the driver causing a black screen. |
| A flaw has been found in Beetel 777VR1 up to 01.00.09/01.00.09_55. The affected element is an unknown function of the component UART Interface. This manipulation causes improper access controls. It is feasible to perform the attack on the physical device. The complexity of an attack is rather high. The exploitability is described as difficult. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability has been found in Sangfor Operation and Maintenance Security Management System up to 3.0.12. The impacted element is an unknown function of the file /fort/audit/get_clip_img of the component HTTP POST Request Handler. Such manipulation of the argument frame/dirno leads to command injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in Sangfor Operation and Maintenance Security Management System up to 3.0.12. This affects the function portValidate of the file /fort/ip_and_port/port_validate of the component HTTP POST Request Handler. Performing a manipulation of the argument port results in command injection. The attack can be initiated remotely. The exploit has been made public and could be used. |
| A vulnerability was determined in Sangfor Operation and Maintenance Security Management System up to 3.0.12. This impacts the function getInformation of the file /equipment/get_Information of the component HTTP POST Request Handler. Executing a manipulation of the argument fortEquipmentIp can lead to command injection. The attack can be launched remotely. The exploit has been publicly disclosed and may be utilized. |
| A flaw has been found in Tenda AC23 16.03.07.52. This impacts an unknown function of the file /goform/WifiExtraSet. This manipulation of the argument wpapsk_crypto causes buffer overflow. Remote exploitation of the attack is possible. The exploit has been published and may be used. |
| A vulnerability was determined in code-projects Online Examination System 1.0. Affected by this issue is some unknown functionality of the file /admin_pic.php. Executing a manipulation can lead to unrestricted upload. The attack may be performed from remote. The exploit has been publicly disclosed and may be utilized. |
| A vulnerability was found in code-projects Online Examination System 1.0. Affected by this vulnerability is an unknown functionality of the file /index.php of the component Login Page. Performing a manipulation of the argument User results in sql injection. The attack is possible to be carried out remotely. The exploit has been made public and could be used. |
| Single Sign-On Portal System developed by WellChoose has a OS Command Injection vulnerability, allowing authenticated remote attackers to inject arbitrary OS commands and execute them on the server. |
| Single Sign-On Portal System developed by WellChoose has a Reflected Cross-site Scripting vulnerability, allowing authenticated remote attackers to execute arbitrary JavaScript codes in user's browser through phishing attacks. |
| Vulnerability in Altitude Authentication Service and Altitude Communication Server v8.5.3290.0 by Altitude, where manipulation of Host header in HTTP requests allows redirection to an arbitrary URL or modification of the base URL to trick the victim into sending login credentials to a malicious website. This behavior can be used to redirect clients to endpoints controlled by the attacker. |
| Single Sign-On Portal System developed by WellChoose has a OS Command Injection vulnerability, allowing authenticated remote attackers to inject arbitrary OS commands and execute them on the server. |
| A local privilege escalation vulnerability has been identified in the Kaba exos 9300 System management application (d9sysdef.exe). Within this application it is possible to specify an arbitrary executable as well as the weekday and start time, when the specified executable should be run with SYSTEM privileges. |
| Deserialization of Untrusted Data vulnerability in Apache Karaf Decanter.
The Decanter log socket collector exposes the port 4560, without authentication. If the collector exposes allowed classes property, this configuration can be bypassed.
It means that the log socket collector is vulnerable to deserialization of untrusted data, eventually causing DoS.
NB: Decanter log socket collector is not installed by default. Users who have not installed Decanter log socket are not impacted by this issue.
This issue affects Apache Karaf Decanter before 2.12.0.
Users are recommended to upgrade to version 2.12.0, which fixes the issue. |