| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Acrobat Reader DC versions versions 2020.013.20074 (and earlier), 2020.001.30018 (and earlier) and 2017.011.30188 (and earlier) are affected by an Out-of-bounds Read vulnerability. An unauthenticated attacker could leverage this vulnerability to locally elevate privileges in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Buffer overflow vulnerability in ELECOM LAN routers (WRH-733GBK firmware v1.02.9 and prior and WRH-733GWH firmware v1.02.9 and prior) allows a network-adjacent attacker with an administrator privilege to execute an arbitrary OS command via unspecified vectors. |
| Out-of-bounds read vulnerability in CX-Supervisor v4.0.0.13 and v4.0.0.16 allows an attacker with administrative privileges to cause information disclosure and/or arbitrary code execution by opening a specially crafted SCS project files. |
| Buffer overflow vulnerability in the compatible API with previous versions CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. |
| Buffer overflow vulnerability in the Transaction Server CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. |
| Buffer overflow vulnerability in the Transaction Server CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. |
| Buffer overflow vulnerability in the Disk Agent CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. |
| Buffer overflow vulnerability in the Disk Agent CLUSTERPRO X 4.3 for Windows and earlier, EXPRESSCLUSTER X 4.3 for Windows and earlier, CLUSTERPRO X 4.3 SingleServerSafe for Windows and earlier, EXPRESSCLUSTER X 4.3 SingleServerSafe for Windows and earlier allows attacker to remote code execution via a network. |
| Buffer overflow vulnerability in LOGITEC LAN-W300N/PGRB allows an attacker with administrative privilege to execute an arbitrary OS command via unspecified vectors. |
| Out-of-bounds Read vulnerability in Mitsubishi Electric GX Works2 versions 1.606G and prior, Mitsubishi Electric MELSOFT Navigator versions 2.84N and prior and Mitsubishi Electric EZSocket versions 5.4 and prior allows an attacker to cause a DoS condition in the software by getting a user to open malicious project file specially crafted by an attacker. |
| Specific cstrings input may not be properly validated in the MongoDB Go Driver when marshalling Go objects into BSON. A malicious user could use a Go object with specific string to potentially inject additional fields into marshalled documents. This issue affects all MongoDB GO Drivers prior to and including 1.5.0. |
| It was discovered that the update for the virt:rhel module in the RHSA-2020:4676 (https://access.redhat.com/errata/RHSA-2020:4676) erratum released as part of Red Hat Enterprise Linux 8.3 failed to include the fix for the qemu-kvm component issue CVE-2020-10756, which was previously corrected in virt:rhel/qemu-kvm via erratum RHSA-2020:4059 (https://access.redhat.com/errata/RHSA-2020:4059). CVE-2021-20295 was assigned to that Red Hat specific security regression. For more details about the original security issue CVE-2020-10756, refer to bug 1835986 or the CVE page: https://access.redhat.com/security/cve/CVE-2020-10756. |
| A flaw was found in Samba's libldb. Multiple, consecutive leading spaces in an LDAP attribute can lead to an out-of-bounds memory write, leading to a crash of the LDAP server process handling the request. The highest threat from this vulnerability is to system availability. |
| A flaw was found in privoxy before 3.0.32. A invalid read of size two may occur in chunked_body_is_complete() leading to denial of service. |
| A flaw was found in RPM's hdrblobInit() in lib/header.c. This flaw allows an attacker who can modify the rpmdb to cause an out-of-bounds read. The highest threat from this vulnerability is to system availability. |
| A flaw was found in samba. The Samba smbd file server must map Windows group identities (SIDs) into unix group ids (gids). The code that performs this had a flaw that could allow it to read data beyond the end of the array in the case where a negative cache entry had been added to the mapping cache. This could cause the calling code to return those values into the process token that stores the group membership for a user. The highest threat from this vulnerability is to data confidentiality and integrity. |
| A flaw was found in the ZeroMQ server in versions before 4.3.3. This flaw allows a malicious client to cause a stack buffer overflow on the server by sending crafted topic subscription requests and then unsubscribing. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability. |
| There's a flaw in the zeromq server in versions before 4.3.3 in src/decoder_allocators.hpp. The decoder static allocator could have its sized changed, but the buffer would remain the same as it is a static buffer. A remote, unauthenticated attacker who sends a crafted request to the zeromq server could trigger a buffer overflow WRITE of arbitrary data if CURVE/ZAP authentication is not enabled. The greatest impact of this flaw is to application availability, data integrity, and confidentiality. |
| An out-of-bounds heap buffer access issue was found in the ARM Generic Interrupt Controller emulator of QEMU up to and including qemu 4.2.0on aarch64 platform. The issue occurs because while writing an interrupt ID to the controller memory area, it is not masked to be 4 bits wide. It may lead to the said issue while updating controller state fields and their subsequent processing. A privileged guest user may use this flaw to crash the QEMU process on the host resulting in DoS scenario. |
| A flaw was found in the Linux kernel's implementation of string matching within a packet. A privileged user (with root or CAP_NET_ADMIN) when inserting iptables rules could insert a rule which can panic the system. Kernel before kernel 5.5-rc1 is affected. |