| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability in JMRI.This issue affects JMRI: before 5.13.3. |
| The Login Security, FireWall, Malware removal by CleanTalk plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the page URL in all versions up to, and including, 2.168 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: kexec: Fix memory leak of fdt buffer
This is reported by kmemleak detector:
unreferenced object 0xff60000082864000 (size 9588):
comm "kexec", pid 146, jiffies 4294900634 (age 64.788s)
hex dump (first 32 bytes):
d0 0d fe ed 00 00 12 ed 00 00 00 48 00 00 11 40 ...........H...@
00 00 00 28 00 00 00 11 00 00 00 02 00 00 00 00 ...(............
backtrace:
[<00000000f95b17c4>] kmemleak_alloc+0x34/0x3e
[<00000000b9ec8e3e>] kmalloc_order+0x9c/0xc4
[<00000000a95cf02e>] kmalloc_order_trace+0x34/0xb6
[<00000000f01e68b4>] __kmalloc+0x5c2/0x62a
[<000000002bd497b2>] kvmalloc_node+0x66/0xd6
[<00000000906542fa>] of_kexec_alloc_and_setup_fdt+0xa6/0x6ea
[<00000000e1166bde>] elf_kexec_load+0x206/0x4ec
[<0000000036548e09>] kexec_image_load_default+0x40/0x4c
[<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322
[<0000000040c62c03>] ret_from_syscall+0x0/0x2
In elf_kexec_load(), a buffer is allocated via kvmalloc() to store fdt.
While it's not freed back to system when kexec kernel is reloaded or
unloaded. Then memory leak is caused. Fix it by introducing riscv
specific function arch_kimage_file_post_load_cleanup(), and freeing the
buffer there. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: perf: marvell_cn10k: Fix hotplug callback leak in tad_pmu_init()
tad_pmu_init() won't remove the callback added by cpuhp_setup_state_multi()
when platform_driver_register() failed. Remove the callback by
cpuhp_remove_multi_state() in fail path.
Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus:
arm-ccn: Prevent hotplug callback leak") |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init
of_icc_get() alloc resources for path handle, we should release it when not
need anymore. Like the release in dwc3_qcom_interconnect_exit() function.
Add icc_put() in error handling to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe()
cw_bat_probe() calls create_singlethread_workqueue() and not checked the
ret value, which may return NULL. And a null-ptr-deref may happen:
cw_bat_probe()
create_singlethread_workqueue() # failed, cw_bat->wq is NULL
queue_delayed_work()
queue_delayed_work_on()
__queue_delayed_work() # warning here, but continue
__queue_work() # access wq->flags, null-ptr-deref
Check the ret value and return -ENOMEM if it is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe()
I found a null pointer reference in arch_prepare_kprobe():
# echo 'p cmdline_proc_show' > kprobe_events
# echo 'p cmdline_proc_show+16' >> kprobe_events
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc000000000050bfc
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10
NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc
REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006
CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0
...
NIP arch_prepare_kprobe+0x10c/0x2d0
LR arch_prepare_kprobe+0xfc/0x2d0
Call Trace:
0xc0000000012f77a0 (unreliable)
register_kprobe+0x3c0/0x7a0
__register_trace_kprobe+0x140/0x1a0
__trace_kprobe_create+0x794/0x1040
trace_probe_create+0xc4/0xe0
create_or_delete_trace_kprobe+0x2c/0x80
trace_parse_run_command+0xf0/0x210
probes_write+0x20/0x40
vfs_write+0xfc/0x450
ksys_write+0x84/0x140
system_call_exception+0x17c/0x3a0
system_call_vectored_common+0xe8/0x278
--- interrupt: 3000 at 0x7fffa5682de0
NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000
REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e)
MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000
The address being probed has some special:
cmdline_proc_show: Probe based on ftrace
cmdline_proc_show+16: Probe for the next instruction at the ftrace location
The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets
set to NULL. In arch_prepare_kprobe() it will check for:
...
prev = get_kprobe(p->addr - 1);
preempt_enable_no_resched();
if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
...
If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur
with a null pointer reference. At this point prev->addr will not be a
prefixed instruction, so the check can be skipped.
Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn'
to fix this problem.
[mpe: Trim oops] |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut()
If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(),
the program will return, resulting in "table" resource is not released. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper()
As the comment of pci_get_domain_bus_and_slot() says, it returns
a PCI device with refcount incremented, so it doesn't need to
call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI
device needs to be put in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
io-wq: Fix memory leak in worker creation
If the CPU mask allocation for a node fails, then the memory allocated for
the 'io_wqe' struct of the current node doesn't get freed on the error
handling path, since it has not yet been added to the 'wqes' array.
This was spotted when fuzzing v6.1-rc1 with Syzkaller:
BUG: memory leak
unreferenced object 0xffff8880093d5000 (size 1024):
comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720
[<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130
[<000000004e107011>] io_wq_create+0x7b9/0xdc0
[<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d
[<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba
[<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce
[<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80
[<000000008a8a7508>] do_syscall_64+0x5d/0x90
[<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: core: Fix kernel panic when remove non-standard SDIO card
SDIO tuple is only allocated for standard SDIO card, especially it causes
memory corruption issues when the non-standard SDIO card has removed, which
is because the card device's reference counter does not increase for it at
sdio_init_func(), but all SDIO card device reference counter gets decreased
at sdio_release_func(). |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: omap_ssi: Fix refcount leak in ssi_probe
When returning or breaking early from a
for_each_available_child_of_node() loop, we need to explicitly call
of_node_put() on the child node to possibly release the node. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_typec: zero out stale pointers
`cros_typec_get_switch_handles` allocates four pointers when obtaining
type-c switch handles. These pointers are all freed if failing to obtain
any of them; therefore, pointers in `port` become stale. The stale
pointers eventually cause use-after-free or double free in later code
paths. Zeroing out all pointer fields after freeing to eliminate these
stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_copy_file_range()
If the file is used by swap, before return -EOPNOTSUPP, should
free the xid, otherwise, the xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe
pm_runtime_get_sync() will increment pm usage counter.
Forgetting to putting operation will result in reference leak.
Add missing pm_runtime_put_sync in some error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: hpsa: Fix possible memory leak in hpsa_init_one()
The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in
hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to
clean1 directly, which frees h and leaks the h->reply_map.
Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead
free h directly. |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: Make port I/O string accessors actually work
Fix port I/O string accessors such as `insb', `outsb', etc. which use
the physical PCI port I/O address rather than the corresponding memory
mapping to get at the requested location, which in turn breaks at least
accesses made by our parport driver to a PCIe parallel port such as:
PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20
parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP]
causing a memory access fault:
Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008
Oops [#1]
Modules linked in:
CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23
Hardware name: SiFive HiFive Unmatched A00 (DT)
epc : parport_pc_fifo_write_block_pio+0x266/0x416
ra : parport_pc_fifo_write_block_pio+0xb4/0x416
epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60
gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000
t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0
s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000
a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb
a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000
s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50
s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000
s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000
s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930
t5 : 0000000000001000 t6 : 0000000000040000
status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f
[<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200
[<ffffffff8053bbc0>] parport_write+0x46/0xf8
[<ffffffff8050530e>] lp_write+0x158/0x2d2
[<ffffffff80185716>] vfs_write+0x8e/0x2c2
[<ffffffff80185a74>] ksys_write+0x52/0xc2
[<ffffffff80185af2>] sys_write+0xe/0x16
[<ffffffff80003770>] ret_from_syscall+0x0/0x2
---[ end trace 0000000000000000 ]---
For simplicity address the problem by adding PCI_IOBASE to the physical
address requested in the respective wrapper macros only, observing that
the raw accessors such as `__insb', `__outsb', etc. are not supposed to
be used other than by said macros. Remove the cast to `long' that is no
longer needed on `addr' now that it is used as an offset from PCI_IOBASE
and add parentheses around `addr' needed for predictable evaluation in
macro expansion. No need to make said adjustments in separate changes
given that current code is gravely broken and does not ever work. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix recursive locking direct_mutex in ftrace_modify_direct_caller
Naveen reported recursive locking of direct_mutex with sample
ftrace-direct-modify.ko:
[ 74.762406] WARNING: possible recursive locking detected
[ 74.762887] 6.0.0-rc6+ #33 Not tainted
[ 74.763216] --------------------------------------------
[ 74.763672] event-sample-fn/1084 is trying to acquire lock:
[ 74.764152] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
register_ftrace_function+0x1f/0x180
[ 74.764922]
[ 74.764922] but task is already holding lock:
[ 74.765421] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.766142]
[ 74.766142] other info that might help us debug this:
[ 74.766701] Possible unsafe locking scenario:
[ 74.766701]
[ 74.767216] CPU0
[ 74.767437] ----
[ 74.767656] lock(direct_mutex);
[ 74.767952] lock(direct_mutex);
[ 74.768245]
[ 74.768245] *** DEADLOCK ***
[ 74.768245]
[ 74.768750] May be due to missing lock nesting notation
[ 74.768750]
[ 74.769332] 1 lock held by event-sample-fn/1084:
[ 74.769731] #0: ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.770496]
[ 74.770496] stack backtrace:
[ 74.770884] CPU: 4 PID: 1084 Comm: event-sample-fn Not tainted ...
[ 74.771498] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
[ 74.772474] Call Trace:
[ 74.772696] <TASK>
[ 74.772896] dump_stack_lvl+0x44/0x5b
[ 74.773223] __lock_acquire.cold.74+0xac/0x2b7
[ 74.773616] lock_acquire+0xd2/0x310
[ 74.773936] ? register_ftrace_function+0x1f/0x180
[ 74.774357] ? lock_is_held_type+0xd8/0x130
[ 74.774744] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.775213] __mutex_lock+0x99/0x1010
[ 74.775536] ? register_ftrace_function+0x1f/0x180
[ 74.775954] ? slab_free_freelist_hook.isra.43+0x115/0x160
[ 74.776424] ? ftrace_set_hash+0x195/0x220
[ 74.776779] ? register_ftrace_function+0x1f/0x180
[ 74.777194] ? kfree+0x3e1/0x440
[ 74.777482] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.777941] ? __schedule+0xb40/0xb40
[ 74.778258] ? register_ftrace_function+0x1f/0x180
[ 74.778672] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.779128] register_ftrace_function+0x1f/0x180
[ 74.779527] ? ftrace_set_filter_ip+0x33/0x70
[ 74.779910] ? __schedule+0xb40/0xb40
[ 74.780231] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.780678] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.781147] ftrace_modify_direct_caller+0x5b/0x90
[ 74.781563] ? 0xffffffffa0201000
[ 74.781859] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.782309] modify_ftrace_direct+0x1b2/0x1f0
[ 74.782690] ? __schedule+0xb40/0xb40
[ 74.783014] ? simple_thread+0x2a/0xb0 [ftrace_direct_modify]
[ 74.783508] ? __schedule+0xb40/0xb40
[ 74.783832] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.784294] simple_thread+0x76/0xb0 [ftrace_direct_modify]
[ 74.784766] kthread+0xf5/0x120
[ 74.785052] ? kthread_complete_and_exit+0x20/0x20
[ 74.785464] ret_from_fork+0x22/0x30
[ 74.785781] </TASK>
Fix this by using register_ftrace_function_nolock in
ftrace_modify_direct_caller. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix reference state management for synchronous callbacks
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller). |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: eeprom: fix null-deref on genl_info in dump
The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on
genl_info in dump") is also needed for ethtool eeprom. |