| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A NULL pointer dereference vulnerability has been reported to affect several QNAP operating system versions. If can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following versions:
QTS 5.2.5.3145 build 20250526 and later
QuTS hero h5.2.5.3138 build 20250519 and later |
| A NULL pointer dereference vulnerability has been reported to affect several QNAP operating system versions. If can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following versions:
QTS 5.2.5.3145 build 20250526 and later
QuTS hero h5.2.5.3138 build 20250519 and later |
| A null pointer dereference vulnerability was discovered in SumatraPDF 3.5.2 during the processing of a crafted .djvu file. When the file is opened, the application crashes inside libmupdf.dll, specifically in the DataPool::has_data() function. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: sof-common: Add NULL check for normal_link string
It's not granted that all entries of struct sof_conn_stream declare
a `normal_link` (a non-SOF, direct link) string, and this is the case
for SoCs that support only SOF paths (hence do not support both direct
and SOF usecases).
For example, in the case of MT8188 there is no normal_link string in
any of the sof_conn_stream entries and there will be more drivers
doing that in the future.
To avoid possible NULL pointer KPs, add a NULL check for `normal_link`. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check writeback connectors in create_validate_stream_for_sink
[WHY & HOW]
This is to check connector type to avoid
unhandled null pointer for writeback connectors. |
| A NULL pointer dereference vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.4907 and later |
| A NULL pointer dereference vulnerability has been reported to affect Qsync Central. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following version:
Qsync Central 5.0.0.0 ( 2025/06/13 ) and later |
| A NULL pointer dereference vulnerability has been reported to affect Qsync Central. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following version:
Qsync Central 4.5.0.7 ( 2025/04/23 ) and later |
| A NULL pointer dereference vulnerability has been reported to affect Qsync Central. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following version:
Qsync Central 5.0.0.0 ( 2025/06/13 ) and later |
| A NULL pointer dereference vulnerability has been reported to affect File Station 5. If a remote attacker gains a user account, they can then exploit the vulnerability to launch a denial-of-service (DoS) attack.
We have already fixed the vulnerability in the following version:
File Station 5 5.5.6.4907 and later |
| In the Linux kernel, the following vulnerability has been resolved:
efi: fix panic in kdump kernel
Check if get_next_variable() is actually valid pointer before
calling it. In kdump kernel this method is set to NULL that causes
panic during the kexec-ed kernel boot.
Tested with QEMU and OVMF firmware. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix null pointer dereference in alloc_preauth_hash()
The Client send malformed smb2 negotiate request. ksmbd return error
response. Subsequently, the client can send smb2 session setup even
thought conn->preauth_info is not allocated.
This patch add KSMBD_SESS_NEED_SETUP status of connection to ignore
session setup request if smb2 negotiate phase is not complete. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix crash by keep old cfg when update TCs more than queues
There are problems if allocated queues less than Traffic Classes.
Commit a632b2a4c920 ("ice: ethtool: Prohibit improper channel config
for DCB") already disallow setting less queues than TCs.
Another case is if we first set less queues, and later update more TCs
config due to LLDP, ice_vsi_cfg_tc() will failed but left dirty
num_txq/rxq and tc_cfg in vsi, that will cause invalid pointer access.
[ 95.968089] ice 0000:3b:00.1: More TCs defined than queues/rings allocated.
[ 95.968092] ice 0000:3b:00.1: Trying to use more Rx queues (8), than were allocated (1)!
[ 95.968093] ice 0000:3b:00.1: Failed to config TC for VSI index: 0
[ 95.969621] general protection fault: 0000 [#1] SMP NOPTI
[ 95.969705] CPU: 1 PID: 58405 Comm: lldpad Kdump: loaded Tainted: G U W O --------- -t - 4.18.0 #1
[ 95.969867] Hardware name: O.E.M/BC11SPSCB10, BIOS 8.23 12/30/2021
[ 95.969992] RIP: 0010:devm_kmalloc+0xa/0x60
[ 95.970052] Code: 5c ff ff ff 31 c0 5b 5d 41 5c c3 b8 f4 ff ff ff eb f4 0f 1f 40 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 89 d1 <8b> 97 60 02 00 00 48 8d 7e 18 48 39 f7 72 3f 55 89 ce 53 48 8b 4c
[ 95.970344] RSP: 0018:ffffc9003f553888 EFLAGS: 00010206
[ 95.970425] RAX: dead000000000200 RBX: ffffea003c425b00 RCX: 00000000006080c0
[ 95.970536] RDX: 00000000006080c0 RSI: 0000000000000200 RDI: dead000000000200
[ 95.970648] RBP: dead000000000200 R08: 00000000000463c0 R09: ffff888ffa900000
[ 95.970760] R10: 0000000000000000 R11: 0000000000000002 R12: ffff888ff6b40100
[ 95.970870] R13: ffff888ff6a55018 R14: 0000000000000000 R15: ffff888ff6a55460
[ 95.970981] FS: 00007f51b7d24700(0000) GS:ffff88903ee80000(0000) knlGS:0000000000000000
[ 95.971108] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.971197] CR2: 00007fac5410d710 CR3: 0000000f2c1de002 CR4: 00000000007606e0
[ 95.971309] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 95.971419] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 95.971530] PKRU: 55555554
[ 95.971573] Call Trace:
[ 95.971622] ice_setup_rx_ring+0x39/0x110 [ice]
[ 95.971695] ice_vsi_setup_rx_rings+0x54/0x90 [ice]
[ 95.971774] ice_vsi_open+0x25/0x120 [ice]
[ 95.971843] ice_open_internal+0xb8/0x1f0 [ice]
[ 95.971919] ice_ena_vsi+0x4f/0xd0 [ice]
[ 95.971987] ice_dcb_ena_dis_vsi.constprop.5+0x29/0x90 [ice]
[ 95.972082] ice_pf_dcb_cfg+0x29a/0x380 [ice]
[ 95.972154] ice_dcbnl_setets+0x174/0x1b0 [ice]
[ 95.972220] dcbnl_ieee_set+0x89/0x230
[ 95.972279] ? dcbnl_ieee_del+0x150/0x150
[ 95.972341] dcb_doit+0x124/0x1b0
[ 95.972392] rtnetlink_rcv_msg+0x243/0x2f0
[ 95.972457] ? dcb_doit+0x14d/0x1b0
[ 95.972510] ? __kmalloc_node_track_caller+0x1d3/0x280
[ 95.972591] ? rtnl_calcit.isra.31+0x100/0x100
[ 95.972661] netlink_rcv_skb+0xcf/0xf0
[ 95.972720] netlink_unicast+0x16d/0x220
[ 95.972781] netlink_sendmsg+0x2ba/0x3a0
[ 95.975891] sock_sendmsg+0x4c/0x50
[ 95.979032] ___sys_sendmsg+0x2e4/0x300
[ 95.982147] ? kmem_cache_alloc+0x13e/0x190
[ 95.985242] ? __wake_up_common_lock+0x79/0x90
[ 95.988338] ? __check_object_size+0xac/0x1b0
[ 95.991440] ? _copy_to_user+0x22/0x30
[ 95.994539] ? move_addr_to_user+0xbb/0xd0
[ 95.997619] ? __sys_sendmsg+0x53/0x80
[ 96.000664] __sys_sendmsg+0x53/0x80
[ 96.003747] do_syscall_64+0x5b/0x1d0
[ 96.006862] entry_SYSCALL_64_after_hwframe+0x65/0xca
Only update num_txq/rxq when passed check, and restore tc_cfg if setup
queue map failed. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: avoid disabling offload when it was never enabled
In an incredibly strange API design decision, qdisc->destroy() gets
called even if qdisc->init() never succeeded, not exclusively since
commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"),
but apparently also earlier (in the case of qdisc_create_dflt()).
The taprio qdisc does not fully acknowledge this when it attempts full
offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in
taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS
parsed from netlink (in taprio_change(), tail called from taprio_init()).
But in taprio_destroy(), we call taprio_disable_offload(), and this
determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags).
But looking at the implementation of FULL_OFFLOAD_IS_ENABLED()
(a bitwise check of bit 1 in q->flags), it is invalid to call this macro
on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set
to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on
an invalid set of flags.
As a result, it is possible to crash the kernel if user space forces an
error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling
of taprio_enable_offload(). This is because drivers do not expect the
offload to be disabled when it was never enabled.
The error that we force here is to attach taprio as a non-root qdisc,
but instead as child of an mqprio root qdisc:
$ tc qdisc add dev swp0 root handle 1: \
mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
$ tc qdisc replace dev swp0 parent 1:1 \
taprio num_tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \
sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \
flags 0x0 clockid CLOCK_TAI
Unable to handle kernel paging request at virtual address fffffffffffffff8
[fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Call trace:
taprio_dump+0x27c/0x310
vsc9959_port_setup_tc+0x1f4/0x460
felix_port_setup_tc+0x24/0x3c
dsa_slave_setup_tc+0x54/0x27c
taprio_disable_offload.isra.0+0x58/0xe0
taprio_destroy+0x80/0x104
qdisc_create+0x240/0x470
tc_modify_qdisc+0x1fc/0x6b0
rtnetlink_rcv_msg+0x12c/0x390
netlink_rcv_skb+0x5c/0x130
rtnetlink_rcv+0x1c/0x2c
Fix this by keeping track of the operations we made, and undo the
offload only if we actually did it.
I've added "bool offloaded" inside a 4 byte hole between "int clockid"
and "atomic64_t picos_per_byte". Now the first cache line looks like
below:
$ pahole -C taprio_sched net/sched/sch_taprio.o
struct taprio_sched {
struct Qdisc * * qdiscs; /* 0 8 */
struct Qdisc * root; /* 8 8 */
u32 flags; /* 16 4 */
enum tk_offsets tk_offset; /* 20 4 */
int clockid; /* 24 4 */
bool offloaded; /* 28 1 */
/* XXX 3 bytes hole, try to pack */
atomic64_t picos_per_byte; /* 32 0 */
/* XXX 8 bytes hole, try to pack */
spinlock_t current_entry_lock; /* 40 0 */
/* XXX 8 bytes hole, try to pack */
struct sched_entry * current_entry; /* 48 8 */
struct sched_gate_list * oper_sched; /* 56 8 */
/* --- cacheline 1 boundary (64 bytes) --- */ |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: fix NULL deref in bond_rr_gen_slave_id
Fix a NULL dereference of the struct bonding.rr_tx_counter member because
if a bond is initially created with an initial mode != zero (Round Robin)
the memory required for the counter is never created and when the mode is
changed there is never any attempt to verify the memory is allocated upon
switching modes.
This causes the following Oops on an aarch64 machine:
[ 334.686773] Unable to handle kernel paging request at virtual address ffff2c91ac905000
[ 334.694703] Mem abort info:
[ 334.697486] ESR = 0x0000000096000004
[ 334.701234] EC = 0x25: DABT (current EL), IL = 32 bits
[ 334.706536] SET = 0, FnV = 0
[ 334.709579] EA = 0, S1PTW = 0
[ 334.712719] FSC = 0x04: level 0 translation fault
[ 334.717586] Data abort info:
[ 334.720454] ISV = 0, ISS = 0x00000004
[ 334.724288] CM = 0, WnR = 0
[ 334.727244] swapper pgtable: 4k pages, 48-bit VAs, pgdp=000008044d662000
[ 334.733944] [ffff2c91ac905000] pgd=0000000000000000, p4d=0000000000000000
[ 334.740734] Internal error: Oops: 96000004 [#1] SMP
[ 334.745602] Modules linked in: bonding tls veth rfkill sunrpc arm_spe_pmu vfat fat acpi_ipmi ipmi_ssif ixgbe igb i40e mdio ipmi_devintf ipmi_msghandler arm_cmn arm_dsu_pmu cppc_cpufreq acpi_tad fuse zram crct10dif_ce ast ghash_ce sbsa_gwdt nvme drm_vram_helper drm_ttm_helper nvme_core ttm xgene_hwmon
[ 334.772217] CPU: 7 PID: 2214 Comm: ping Not tainted 6.0.0-rc4-00133-g64ae13ed4784 #4
[ 334.779950] Hardware name: GIGABYTE R272-P31-00/MP32-AR1-00, BIOS F18v (SCP: 1.08.20211002) 12/01/2021
[ 334.789244] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 334.796196] pc : bond_rr_gen_slave_id+0x40/0x124 [bonding]
[ 334.801691] lr : bond_xmit_roundrobin_slave_get+0x38/0xdc [bonding]
[ 334.807962] sp : ffff8000221733e0
[ 334.811265] x29: ffff8000221733e0 x28: ffffdbac8572d198 x27: ffff80002217357c
[ 334.818392] x26: 000000000000002a x25: ffffdbacb33ee000 x24: ffff07ff980fa000
[ 334.825519] x23: ffffdbacb2e398ba x22: ffff07ff98102000 x21: ffff07ff981029c0
[ 334.832646] x20: 0000000000000001 x19: ffff07ff981029c0 x18: 0000000000000014
[ 334.839773] x17: 0000000000000000 x16: ffffdbacb1004364 x15: 0000aaaabe2f5a62
[ 334.846899] x14: ffff07ff8e55d968 x13: ffff07ff8e55db30 x12: 0000000000000000
[ 334.854026] x11: ffffdbacb21532e8 x10: 0000000000000001 x9 : ffffdbac857178ec
[ 334.861153] x8 : ffff07ff9f6e5a28 x7 : 0000000000000000 x6 : 000000007c2b3742
[ 334.868279] x5 : ffff2c91ac905000 x4 : ffff2c91ac905000 x3 : ffff07ff9f554400
[ 334.875406] x2 : ffff2c91ac905000 x1 : 0000000000000001 x0 : ffff07ff981029c0
[ 334.882532] Call trace:
[ 334.884967] bond_rr_gen_slave_id+0x40/0x124 [bonding]
[ 334.890109] bond_xmit_roundrobin_slave_get+0x38/0xdc [bonding]
[ 334.896033] __bond_start_xmit+0x128/0x3a0 [bonding]
[ 334.901001] bond_start_xmit+0x54/0xb0 [bonding]
[ 334.905622] dev_hard_start_xmit+0xb4/0x220
[ 334.909798] __dev_queue_xmit+0x1a0/0x720
[ 334.913799] arp_xmit+0x3c/0xbc
[ 334.916932] arp_send_dst+0x98/0xd0
[ 334.920410] arp_solicit+0xe8/0x230
[ 334.923888] neigh_probe+0x60/0xb0
[ 334.927279] __neigh_event_send+0x3b0/0x470
[ 334.931453] neigh_resolve_output+0x70/0x90
[ 334.935626] ip_finish_output2+0x158/0x514
[ 334.939714] __ip_finish_output+0xac/0x1a4
[ 334.943800] ip_finish_output+0x40/0xfc
[ 334.947626] ip_output+0xf8/0x1a4
[ 334.950931] ip_send_skb+0x5c/0x100
[ 334.954410] ip_push_pending_frames+0x3c/0x60
[ 334.958758] raw_sendmsg+0x458/0x6d0
[ 334.962325] inet_sendmsg+0x50/0x80
[ 334.965805] sock_sendmsg+0x60/0x6c
[ 334.969286] __sys_sendto+0xc8/0x134
[ 334.972853] __arm64_sys_sendto+0x34/0x4c
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix a debugfs null pointer error
[WHY & HOW]
Check whether get_subvp_en() callback exists before calling it. |
| Dragonfly is an open source P2P-based file distribution and image acceleration system. Prior to 2.1.0, the first return value of a function is dereferenced even when the function returns an error. This can result in a nil dereference, and cause code to panic. This vulnerability is fixed in 2.1.0. |
| NVIDIA CUDA Toolkit for Windows and Linux contains a vulnerability in the nvdisam command line tool, where a user can cause a NULL pointer dereference by running nvdisasm on a malformed ELF file. A successful exploit of this vulnerability might lead to a limited denial of service. |
|
NVIDIA CUDA toolkit for all platforms contains a vulnerability in cuobjdump and nvdisasm where an attacker may cause a crash by tricking a user into reading a malformed ELF file. A successful exploit of this vulnerability may lead to a partial denial of service.
|
| NVIDIA CUDA toolkit for all platforms contains a vulnerability in the nvdisasm binary, where a user could cause a NULL pointer exception by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability might lead to a partial denial of service. |