| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix memory leak when build ntlmssp negotiate blob failed
There is a memory leak when mount cifs:
unreferenced object 0xffff888166059600 (size 448):
comm "mount.cifs", pid 51391, jiffies 4295596373 (age 330.596s)
hex dump (first 32 bytes):
fe 53 4d 42 40 00 00 00 00 00 00 00 01 00 82 00 .SMB@...........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000060609a61>] mempool_alloc+0xe1/0x260
[<00000000adfa6c63>] cifs_small_buf_get+0x24/0x60
[<00000000ebb404c7>] __smb2_plain_req_init+0x32/0x460
[<00000000bcf875b4>] SMB2_sess_alloc_buffer+0xa4/0x3f0
[<00000000753a2987>] SMB2_sess_auth_rawntlmssp_negotiate+0xf5/0x480
[<00000000f0c1f4f9>] SMB2_sess_setup+0x253/0x410
[<00000000a8b83303>] cifs_setup_session+0x18f/0x4c0
[<00000000854bd16d>] cifs_get_smb_ses+0xae7/0x13c0
[<000000006cbc43d9>] mount_get_conns+0x7a/0x730
[<000000005922d816>] cifs_mount+0x103/0xd10
[<00000000e33def3b>] cifs_smb3_do_mount+0x1dd/0xc90
[<0000000078034979>] smb3_get_tree+0x1d5/0x300
[<000000004371f980>] vfs_get_tree+0x41/0xf0
[<00000000b670d8a7>] path_mount+0x9b3/0xdd0
[<000000005e839a7d>] __x64_sys_mount+0x190/0x1d0
[<000000009404c3b9>] do_syscall_64+0x35/0x80
When build ntlmssp negotiate blob failed, the session setup request
should be freed. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: fix some leaks in probe
The dwc3_get_properties() function calls:
dwc->usb_psy = power_supply_get_by_name(usb_psy_name);
so there is some additional clean up required on these error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: vt6655: fix some erroneous memory clean-up loops
In some initialization functions of this driver, memory is allocated with
'i' acting as an index variable and increasing from 0. The commit in
"Fixes" introduces some clean-up codes in case of allocation failure,
which free memory in reverse order with 'i' decreasing to 0. However,
there are some problems:
- The case i=0 is left out. Thus memory is leaked.
- In case memory allocation fails right from the start, the memory
freeing loops will start with i=-1 and invalid memory locations will
be accessed.
One of these loops has been fixed in commit c8ff91535880 ("staging:
vt6655: fix potential memory leak"). Fix the remaining erroneous loops. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns: fix possible memory leak in hnae_ae_register()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff00c01aba2100 (size 128):
comm "systemd-udevd", pid 1259, jiffies 4294903284 (age 294.152s)
hex dump (first 32 bytes):
68 6e 61 65 30 00 00 00 18 21 ba 1a c0 00 ff ff hnae0....!......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000034783f26>] slab_post_alloc_hook+0xa0/0x3e0
[<00000000748188f2>] __kmem_cache_alloc_node+0x164/0x2b0
[<00000000ab0743e8>] __kmalloc_node_track_caller+0x6c/0x390
[<000000006c0ffb13>] kvasprintf+0x8c/0x118
[<00000000fa27bfe1>] kvasprintf_const+0x60/0xc8
[<0000000083e10ed7>] kobject_set_name_vargs+0x3c/0xc0
[<000000000b87affc>] dev_set_name+0x7c/0xa0
[<000000003fd8fe26>] hnae_ae_register+0xcc/0x190 [hnae]
[<00000000fe97edc9>] hns_dsaf_ae_init+0x9c/0x108 [hns_dsaf]
[<00000000c36ff1eb>] hns_dsaf_probe+0x548/0x748 [hns_dsaf] |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_create()
If the cifs already shutdown, we should free the xid before return,
otherwise, the xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: tifm: fix possible memory leak in tifm_7xx1_switch_media()
If device_register() returns error in tifm_7xx1_switch_media(),
name of kobject which is allocated in dev_set_name() called in device_add()
is leaked.
Never directly free @dev after calling device_register(), even
if it returned an error! Always use put_device() to give up the
reference initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: Fix a memory leak in an error handling path
If this memdup_user() call fails, the memory allocated in a previous call
a few lines above should be freed. Otherwise it leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix possible name leaks when rio_add_device() fails
Patch series "rapidio: fix three possible memory leaks".
This patchset fixes three name leaks in error handling.
- patch #1 fixes two name leaks while rio_add_device() fails.
- patch #2 fixes a name leak while rio_register_mport() fails.
This patch (of 2):
If rio_add_device() returns error, the name allocated by dev_set_name()
need be freed. It should use put_device() to give up the reference in the
error path, so that the name can be freed in kobject_cleanup(), and the
'rdev' can be freed in rio_release_dev(). |
| In the Linux kernel, the following vulnerability has been resolved:
floppy: Fix memory leak in do_floppy_init()
A memory leak was reported when floppy_alloc_disk() failed in
do_floppy_init().
unreferenced object 0xffff888115ed25a0 (size 8):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 8 bytes):
00 ac 67 5b 81 88 ff ff ..g[....
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<00000000a87bfa9e>] blk_mq_realloc_tag_set_tags.part.0+0x6f/0x180
[<000000006f02e8b1>] blk_mq_alloc_tag_set+0x573/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810fc30540 (size 32):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<000000006b91eab4>] blk_mq_alloc_tag_set+0x393/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
If the floppy_alloc_disk() failed, disks of current drive will not be set,
thus the lastest allocated set->tag cannot be freed in the error handling
path. A simple call graph shown as below:
floppy_module_init()
floppy_init()
do_floppy_init()
for (drive = 0; drive < N_DRIVE; drive++)
blk_mq_alloc_tag_set()
blk_mq_alloc_tag_set_tags()
blk_mq_realloc_tag_set_tags() # set->tag allocated
floppy_alloc_disk()
blk_mq_alloc_disk() # error occurred, disks failed to allocated
->out_put_disk:
for (drive = 0; drive < N_DRIVE; drive++)
if (!disks[drive][0]) # the last disks is not set and loop break
break;
blk_mq_free_tag_set() # the latest allocated set->tag leaked
Fix this problem by free the set->tag of current drive before jump to
error handling path.
[efremov: added stable list, changed title] |
| AIOHTTP is an asynchronous HTTP client/server framework for asyncio and Python. Versions 3.13.2 and below allow a zip bomb to be used to execute a DoS against the AIOHTTP server. An attacker may be able to send a compressed request that when decompressed by AIOHTTP could exhaust the host's memory. This issue is fixed in version 3.13.3. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below are prone to have Undefined Behavior (UB) and Out of Memory errors. This issue is fixed in version 2.3.1.2. |
| A vulnerability in the Internet Key Exchange Version 2 (IKEv2) module of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a memory leak or a reload of an affected device that leads to a denial of service (DoS) condition. The vulnerability is due to incorrect processing of certain IKEv2 packets. An attacker could exploit this vulnerability by sending crafted IKEv2 packets to an affected device to be processed. A successful exploit could cause an affected device to continuously consume memory and eventually reload, resulting in a DoS condition. Cisco Bug IDs: CSCvf22394. |
| Uncontrolled resource consumption for some Intel(R) SPS firmware before version SPS_E5_06.01.04.002.0 may allow a privileged user to potentially enable denial of service via network access. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix memory leak in ath12k_service_ready_ext_event
Currently, in ath12k_service_ready_ext_event(), svc_rdy_ext.mac_phy_caps
is not freed in the failure case, causing a memory leak. The following
trace is observed in kmemleak:
unreferenced object 0xffff8b3eb5789c00 (size 1024):
comm "softirq", pid 0, jiffies 4294942577
hex dump (first 32 bytes):
00 00 00 00 01 00 00 00 00 00 00 00 7b 00 00 10 ............{...
01 00 00 00 00 00 00 00 01 00 00 00 1f 38 00 00 .............8..
backtrace (crc 44e1c357):
__kmalloc_noprof+0x30b/0x410
ath12k_wmi_mac_phy_caps_parse+0x84/0x100 [ath12k]
ath12k_wmi_tlv_iter+0x5e/0x140 [ath12k]
ath12k_wmi_svc_rdy_ext_parse+0x308/0x4c0 [ath12k]
ath12k_wmi_tlv_iter+0x5e/0x140 [ath12k]
ath12k_service_ready_ext_event.isra.0+0x44/0xd0 [ath12k]
ath12k_wmi_op_rx+0x2eb/0xd70 [ath12k]
ath12k_htc_rx_completion_handler+0x1f4/0x330 [ath12k]
ath12k_ce_recv_process_cb+0x218/0x300 [ath12k]
ath12k_pci_ce_workqueue+0x1b/0x30 [ath12k]
process_one_work+0x219/0x680
bh_worker+0x198/0x1f0
tasklet_action+0x13/0x30
handle_softirqs+0xca/0x460
__irq_exit_rcu+0xbe/0x110
irq_exit_rcu+0x9/0x30
Free svc_rdy_ext.mac_phy_caps in the error case to fix this memory leak.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: stratix10-svc: Fix a potential resource leak in svc_create_memory_pool()
svc_create_memory_pool() is only called from stratix10_svc_drv_probe().
Most of resources in the probe are managed, but not this memremap() call.
There is also no memunmap() call in the file.
So switch to devm_memremap() to avoid a resource leak. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx: clk-imx8mn: fix memory leak in imx8mn_clocks_probe
Use devm_of_iomap() instead of of_iomap() to automatically handle
the unused ioremap region.
If any error occurs, regions allocated by kzalloc() will leak,
but using devm_kzalloc() instead will automatically free the memory
using devm_kfree(). |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: call op_release, even when op_func returns an error
For ops with "trivial" replies, nfsd4_encode_operation will shortcut
most of the encoding work and skip to just marshalling up the status.
One of the things it skips is calling op_release. This could cause a
memory leak in the layoutget codepath if there is an error at an
inopportune time.
Have the compound processing engine always call op_release, even when
op_func sets an error in op->status. With this change, we also need
nfsd4_block_get_device_info_scsi to set the gd_device pointer to NULL
on error to avoid a double free. |
| In the Linux kernel, the following vulnerability has been resolved:
watchdog: Fix kmemleak in watchdog_cdev_register
kmemleak reports memory leaks in watchdog_dev_register, as follows:
unreferenced object 0xffff888116233000 (size 2048):
comm ""modprobe"", pid 28147, jiffies 4353426116 (age 61.741s)
hex dump (first 32 bytes):
80 fa b9 05 81 88 ff ff 08 30 23 16 81 88 ff ff .........0#.....
08 30 23 16 81 88 ff ff 00 00 00 00 00 00 00 00 .0#.............
backtrace:
[<000000007f001ffd>] __kmem_cache_alloc_node+0x157/0x220
[<000000006a389304>] kmalloc_trace+0x21/0x110
[<000000008d640eea>] watchdog_dev_register+0x4e/0x780 [watchdog]
[<0000000053c9f248>] __watchdog_register_device+0x4f0/0x680 [watchdog]
[<00000000b2979824>] watchdog_register_device+0xd2/0x110 [watchdog]
[<000000001f730178>] 0xffffffffc10880ae
[<000000007a1a8bcc>] do_one_initcall+0xcb/0x4d0
[<00000000b98be325>] do_init_module+0x1ca/0x5f0
[<0000000046d08e7c>] load_module+0x6133/0x70f0
...
unreferenced object 0xffff888105b9fa80 (size 16):
comm ""modprobe"", pid 28147, jiffies 4353426116 (age 61.741s)
hex dump (first 16 bytes):
77 61 74 63 68 64 6f 67 31 00 b9 05 81 88 ff ff watchdog1.......
backtrace:
[<000000007f001ffd>] __kmem_cache_alloc_node+0x157/0x220
[<00000000486ab89b>] __kmalloc_node_track_caller+0x44/0x1b0
[<000000005a39aab0>] kvasprintf+0xb5/0x140
[<0000000024806f85>] kvasprintf_const+0x55/0x180
[<000000009276cb7f>] kobject_set_name_vargs+0x56/0x150
[<00000000a92e820b>] dev_set_name+0xab/0xe0
[<00000000cec812c6>] watchdog_dev_register+0x285/0x780 [watchdog]
[<0000000053c9f248>] __watchdog_register_device+0x4f0/0x680 [watchdog]
[<00000000b2979824>] watchdog_register_device+0xd2/0x110 [watchdog]
[<000000001f730178>] 0xffffffffc10880ae
[<000000007a1a8bcc>] do_one_initcall+0xcb/0x4d0
[<00000000b98be325>] do_init_module+0x1ca/0x5f0
[<0000000046d08e7c>] load_module+0x6133/0x70f0
...
The reason is that put_device is not be called if cdev_device_add fails
and wdd->id != 0.
watchdog_cdev_register
wd_data = kzalloc [1]
err = dev_set_name [2]
..
err = cdev_device_add
if (err) {
if (wdd->id == 0) { // wdd->id != 0
..
}
return err; // [1],[2] would be leaked
To fix it, call put_device in all wdd->id cases. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix warning in cifs_smb3_do_mount()
This fixes the following warning reported by kernel test robot
fs/smb/client/cifsfs.c:982 cifs_smb3_do_mount() warn: possible
memory leak of 'cifs_sb' |
| In the Linux kernel, the following vulnerability has been resolved:
spi: imx: Don't skip cleanup in remove's error path
Returning early in a platform driver's remove callback is wrong. In this
case the dma resources are not released in the error path. this is never
retried later and so this is a permanent leak. To fix this, only skip
hardware disabling if waking the device fails. |